+高级检索
煤油流量对NiCrBSi-CrSi2涂层微观结构及高温磨损性能的影响
作者:
作者单位:

安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室

基金项目:

国家自然科学(项目号:52201058);安徽省高校协同创新项目(项目号:GXXT-2020-071)


Effect of kerosene flow on microstructure and high temperature wear properties of NiCrBSi-CrSi2 coating
Author:
Affiliation:

Key Laboratory of Green Preparation and Surface Technology of Advanced Metal Materials,Ministry of Education,Anhui University of Technology,Ma''anshan

Fund Project:

Natural Science Foundation of China (Grant No.: 52201058); the University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2020-071)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在12CrMoVG基体上通过超音速火焰喷涂(HVOF)技术,分别采用不同煤油流量制备了NiCrBSi-CrSi2复合涂层。利用 XRD、SEM、EDS、Raman、维氏显微硬度计、电子拉伸试验机和高温旋转式摩擦磨损试验机分别表征了不同煤油流量下涂层物相、组织结构、力学性能和高温摩擦磨损性能。结果表明: 不同煤油流量涂层的物相组成基本相同,均有γ-Ni、Ni3B、Cr2B、CrSi2和Cr5Si3,但随着煤油流量升高,涂层中的CrSi2和Cr2B的部分会分别转变为Cr5Si3和CrB相。涂层显微硬度和结合强度随着煤油流量的升高均呈现先增后减的趋势,孔隙率和磨损率表现出先减后增的趋势。当煤油流量为30 L/h时,粉末熔融效果最好,涂层的孔隙率最低为0.17 %,显微硬度较高达到569 HV0.3,结合强度较高为59 MPa,磨损率最低为2.84×10-14 m3/(N.m)。磨痕表面产生的 Cr2O3、SiO2和NiCr2O4等氧化物以及较高的涂层硬度使得30 L/h的涂层显示出最优的耐高温摩擦磨损性能。涂层的磨损机制以氧化磨损和黏着磨损为主。

    Abstract:

    The NiCrBSi-CrSi2 composite coating was prepared by supersonic flame spraying (HVOF) technology on the 12CrMoVG substrate by using different kerosene flow rates. XRD, SEM, EDS, Raman, Vickers microhardness tester, electronic tensile testing machine and high temperature rotational friction and wear testing machine were used to characterize the coating phase, microstructure, mechanical properties and high temperature friction and wear properties at different kerosene flow rates. The results showed that the phase composition of coatings is basically the same, all of which have γ-Ni, Ni3B, Cr2B, CrSi2 and Cr5Si3. But as the kerosene flow increases, the CrSi2 and Cr2B parts in the coating will be transformed into Cr5Si3 and CrB phases, respectively. The microhardness and bonding strength of the coating showed a trend of first increasing and then decreasing with the increase of kerosene flow, and the porosity and wear rate showed a trend of first decreasing and then increasing. When the kerosene flow rate is 30 L/h, the powder melting effect is the best, the porosity of the coating is as low as 0.17 %, the microhardness is higher to 569 HV0.3, the bonding strength is higher to 59 MPa, and the wear rate is as low as 2.84×10-14 m3/(N.m). Oxides such as Cr2O3, SiO2 and NiCr2O4 generated on the surface of the wear mark and the high coating hardness make the coating 30 L/h show optimal high temperature friction and wear resistance. The wear mechanism of the coating is mainly oxidative wear and adhesive wear.

    参考文献
    [1] Song Q , Sun C , Wang Z , et al. Municipal solid waste to electricity development and future trend in China: a special life cycle assessment case study of Macau[M]. 2020.
    [2] Ma W , Wenga T , Frandsen F J , et al. The fate of chlorine during MSW incineration: Vaporization, transformation, deposition, corrosion and remedies[J]. Progress in Energy and Combustion Science, 2020, 76(Jan.):100789.1-100789.39.
    [3] Reinaldo P R , A. S. C. M. D’Oliveira. NiCrSiB Coatings Deposited by Plasma Transferred Arc on Different Steel Substrates[J]. Journal of Materials Engineering and Performance, 2013, 22(2):590-597.
    [4] T. S , Sidhu, and, et al. Hot corrosion behaviour of HVOF-sprayed NiCrBSi coatings on Ni- and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900S°C[J]. Acta Materialia, 2006.
    [5] Tang L , Kang J J , He P F , et al. Effects of spraying conditions on the microstructure and properties of NiCrBSi coatings prepared by internal rotating plasma spraying[J]. Surface and Coatings Technology, 2019, 374:625-633.
    [6] Xiao, Jin-KunWu, Yu-QingZhang, WeiChen, JuanWei, Xin-LongZhang, Chao. Microstructure, wear and corrosion behaviors of plasma sprayed NiCrBSi-Zr coating[J]. Surface Coatings Technology, 2019, 360.
    [7] Rachidi, R. , B. E. Kihel , and F. Delaunois . "Microstructure and mechanical characterization of NiCrBSi alloy and NiCrBSi-WC composite coatings produced by flame spraying." Materials Science and Engineering B 241.FEB.(2019):13-21.
    [8] Afsous M . Characterization and Evaluation of Tribological Properties of NiCrBSi-Gr Composite Coatings Deposited on Stainless Steel 420 by HVOF[J]. Journal of Thermal Spray Technology, 2020, 29(4).
    [9] Quan H , Sui S , Wang L , et al. A low-temperature preparation strategy of SiC/ZrB_2-CrSi_2-Si/SiC multilayer oxidation-resistant coating for C/C composites: Process, kinetics and mechanism research[J]. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 2021(562-Oct.1).
    [11]Oxidation and ablation resistance of the ZrB2-CrSi2-Si/SiC coating for C/C composites at high temperature[J]. Journal of Alloys Compounds, 2016, 662:302-307.
    [12] Liu X . Microstructure and oxidation property of CrSi2-ZrSi2-Y2O3/SiC coating prepared on C/C composites by supersonic atmosphere plasma spraying[J]. Surface Coatings Technology, 2019, 374.
    [13] Ma Y D , Guo M Y , Li W , et al. Microstructure and properties of Cr7C3-CrSi2 composite coatings prepared by plasma spraying[J]. Surface and Coatings Technology, 2021, 412:127011.
    [14] Li K , Hu M . Dynamic oxidation resistance and residual mechanical strength of ZrB2-CrSi2-SiC-Si/SiC coated C/C composites[J]. Ceramics International, 2016, 43(6):4880-4887.
    [15]刘保国, 柯鹏, 陈鹏飞,等. 现代喷涂技术用于锅炉管道的防护及其发展[J]. 热处理, 2016, 31(3):3.
    [16]祝林, 张立, 赵素,等. 结晶器表面超音速火焰喷涂WC-12Co涂层的组织性能分析[J]. 铸造技术, 2011, 32(2):6.
    [17]龚玉兵, 王善林, 聂贵茂,等. 煤油流量对HVOF铁基非晶涂层组织与性能的影响[J]. 中国表面工程, 2016, 29(5):8.
    [18] Lindner T , M L?bel, Lampke T . Phase Stability and Microstructure Evolution of Solution-Hardened 316L Powder Feedstock for Thermal Spraying[J]. Metals - Open Access Metallurgy Journal, 2018, 8(12).
    [19] Liu S , Zheng X , Geng G . Dry sliding wear behavior and corrosion resistance of NiCrBSi coating deposited by activated combustion-high velocity air fuel spray process[J]. Materials Design, 2010, 31(2):913-917.
    [20] 伊亚修克一世、波戈热夫、列瓦绍夫等。基于硼化锆和硅化锆的SHS陶瓷生产及高温氧化的特点[J].俄罗斯有色金属学报, 2018, 59(3):311-322.
    [21]韩滔. 喷距对低温超音速火焰喷涂WC-10Co4Cr涂层性能的影响[J]. 中南大学学报:自然科学版, 2015, 46(3):7.
    [22]刘杰, 刘侠, 胡凯,等. 煤油流量对HVOF喷涂WC-12Co/NiCrBSi复合涂层显微组织与性能的影响[J]. 中国表面工程, 2020(3):10.
    [23]温诗铸, 黄平. 摩擦学原理 第4版[M]. 清华大学出版社, 2012:287-288.
    [24] Quan H , Sui S , Wang L , et al. A low-temperature preparation strategy of SiC/ZrB_2-CrSi_2-Si/SiC multilayer oxidation-resistant coating for C/C composites: Process, kinetics and mechanism research[J]. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 2021(562-Oct.1).
    [25]薛茂权. 含MoS2镍基高温合金在800℃的恒温氧化行为[J]. 兵器材料科学与工程, 2009, 32(1):3.
    [26] Kong D , Zhao B . SURFACE-INTERFACE MICROSTRUCTURES AND HIGH-TEMPERATURE WEAR PERFORMANCE OF HVOF-SPRAYED AND LASER-REMELTED NiCrBSi ALLOY COATINGS[J]. Surface Review Letters, 2017, 24(5).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王志强,刘侠,张世宏,任奕,杨康,杨洋,薛召露.煤油流量对NiCrBSi-CrSi2涂层微观结构及高温磨损性能的影响[J].稀有金属材料与工程,2024,53(3):825~833.[WANG Zhiqiang, LIU Xia, ZHANG Shihong, REN Yi, YANG Kang, YANG Yang, XUE Zhaolu. Effect of kerosene flow on microstructure and high temperature wear properties of NiCrBSi-CrSi2 coating[J]. Rare Metal Materials and Engineering,2024,53(3):825~833.]
DOI:10.12442/j. issn.1002-185X.20230135

复制
文章指标
  • 点击次数:147
  • 下载次数: 619
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-03-16
  • 最后修改日期:2023-04-27
  • 录用日期:2023-05-05
  • 在线发布日期: 2024-03-27
  • 出版日期: 2024-03-20