Abstract:WC-12Co particles were deposited on polished AA7075 (7075 aluminum alloy) substrate by HVOF (high velocity oxy-fuel) spraying. The microstructure, composition and hardness of the deposits were analyzed by SEM, EDS and nanoindentation hardness tester, respectively. The deposition behavior of six types of particles in three different molten states, including non-molten, semi-molten, and molten particles, was investigated. Results show that different types of particles have great impact on the substrate, which makes the AA7075 substrate deform or causes tears. The surface morphology and cross-sectional morphology of the deposits are different from those of the original powder. The surface of the deposits exhibits certain melting characteristics, and the cross-section is relatively dense. The semi-molten particles and molten particles generate some tearing to the substrate, and have a metallurgical bonding with the substrate to form a mutual meting zone. After the deposition of the particles, a hardened layer is formed on substrate surface with a thickness about 5 μm, and there is a certain gradient change in the hardness. The hardness near the surface is 3420 MPa, which is 1.56 times higher than that of the substrate (2200 MPa). The increase in hardness is originated from two factors: the peening effect of particles at high temperature and high speed, and the work hardening caused by particle extruding substrate.