+高级检索
三联冶炼+挤压制备的GH4710合金棒材热变形行为及热加工图
作者:
作者单位:

中国航发北京航空材料研究院

基金项目:

国家自然科学基金资助(项目号519901218)


Hot deformation behavior and hot processing maps of triple-smelted GH4710 alloy after extrusion
Author:
Affiliation:

AECC Beijing Institute of Aeronautical Materials

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    采用真空感应(VIM)+电渣重熔(ESR )+真空自耗(VAR)三联冶炼制备的GH4710合金铸锭经挤压获得棒材。在Gleeble1500试验机上开展等温压缩实验,研究了三联铸锭挤压态GH4710合金在温度1050~1150 ℃,应变速率0.01~5 s-1条件下的热变形行为。结果表明,应力应变曲线具有明显的动态再结晶特征,且应力随着变形温度的升高和应变速率的降低而明显减小。基于应力应变曲线,建立了合金动态再结晶临界应变模型,同时建立了考虑应变影响的Arrhenius本构模型来精确描述合金应力、应变速率和温度的依赖关系。最后以动态材料模型为基础构建了合金热加工图,结合显微组织分析,明确了合金流变失稳特征为不均匀显微组织,确定了合金最佳锻造工艺参数范围为1050 ℃≤T≤1100 ℃、0.01 s-1≤ ≤0.1 s-1。

    Abstract:

    The hot deformation behavior of as-extruded GH4710 alloy prepared by vacuum induction melting(VIM)+electroslag remelting(ESR)+vacuum arc remelting(VAR) triple smelt process was studied by hot compression tests at temperatures of 1050~1150℃ and strain rates of 0.01~5 s-1. The results show that the stress-strain curves have obvious dynamic recrystallization characteristics, and the stress decreases significantly with increasing temperature and decreasing strain rate. Base on the compressive true stress vs. true strain curves, the critical strain model of dynamic recrystallization was developed. At the same time, the Arrhenius constitutive model considering the influence of strain is established to accurately describe the dependence of alloy stress, strain rate and temperature. Finally, based on the dynamic material model, the thermal processing diagram of the alloy was constructed, and combined with the microstructure analysis, the rheological instability of the alloy was clarified as the uneven microstructure , and the hot working parameters of the as-extruded-trip-smelted GH4710 alloy are suggested to be the deformation temperatures of about 1050~1100 ℃ and the strain rate of about 0.01~0.1 s-1.

    参考文献
    [1] China Aeronautical Materials Handbook Editorial Board. China Aeronautical Materials Handbook(Second Edition) Volume 2(中国航空材料手册 第2版 第2卷 [M]. Beijing: Standards Press of China, 2002:468.
    [2] Wang Shuyun(王淑云), Li Huiqu(李惠曲), Yang Hongtao(杨洪涛). Forging Stamping Technology[J],2007,32(4): 29.
    [3] Guo Jianting(郭建亭). Materials science and engineering for superalloys (高温合金材料学.中册,制备工艺)[M].Beijing: Science Press,2008:127.
    [4] Liu Yanmei(刘艳梅), Chen Guosheng(陈国胜), Wang Qingzeng(王庆增) et al. Journal of Aeronautical Materials[J],2011,31(4):18.
    [5] Wang Xiaofeng(王晓峰), Zhou Xiaoming(周晓明), Mu Songlin(穆松林), et al. Materials Reports A [J],2012,26(4):108.
    [6] Wang Zixing(王资兴), Huang Shuo(黄烁), Zhang Beijiang(张北江) et al. Acta Metallurgica Sinica[J],2019,55(3):417.
    [7] Zhang Beijiang(张北江), Huang Shuo(黄烁), Zhang Wenyun(张文云) et al. Acta Metallurgica Sinica[J],2019,55(9):1095.
    [8] Fu Mingjie(付明杰), Jing Yongjuan(静永娟), Zhang Ji(张继). Journal of Materials Engineering[J], 2011,(5):62
    [9] Wang Chaoyuan(王超渊), Dong Yunpeng(东赟鹏), Wang Shuyun(王淑云) et al. Forging Stamping Technology[J], 2014,39(4):126.
    [11] Zhao Meilan(赵美兰), Sun Wenru(孙文儒), Yang Shulin(杨树林) et al. Acta Metallurgica Sinica[J], 2009,45(1):79.
    [12] Zhou Ge(周 舸), Zhang Siqian(张思倩), Zhang Haoyu(张浩宇) et al. Rare Metal Materials and Engineering[J],2019,48(12):3939
    [13] Deng Yahui(邓亚辉), Yang Yinhui(杨银辉), Cao Jianchun(曹建春) et al. Acta Metallurgica Sinica[J], 2019,55(4):445.
    [14] Zhou Qiang(周强), Cheng Jun(程军), Yu Zhentao(于振涛) et al. Journal of Materials Engineering[J], 2019, 47(6): 121.
    [15] Ouyang Delai(欧阳德来), LU Shiqian(鲁世强), Cui Xia(崔霞) et al. Journal of Aeronautical Materials[J],2010,30(2):17.
    [16] Cai Zhiwei(蔡志伟), Chen Fuxia(陈拂晓), Guo Jun-qin(郭俊卿). The Chinese Journal of Nonferrous Metals[J],2015,25(9):2335.
    [17] Wu Shuting(吴舒婷). Hot deformation behavior and microstructure evolution of 20CrMnTiH[D]. Wuhan: Wuhan University of Technolgy,2015:31.
    [18] Sun Cuicui, Liu Ke, Wang Zhaohui et al. Transactions of Nonferrous Metals Society of China[J], 2016,26(12):3123.
    [19] Hu Chao(胡超). Research on hot plastic deformation behavior of GH4689 Nikel-based superalloy[D]. Haerbin: Harbin Institute of Technology,2015:25.
    [20] Prasad Y.V.R.K, Seshacharyulu T. International Materials Reviews[J],1998,43(6):243.
    [21] Zhou Ge(周舸), Han Yinben(韩寅奔), Qu Jinglong(曲敬龙) et al. Journal of Northeastern University(Natural Science)[J],2012,33(5):702.
    [22] Wang Guihua(王桂花), Yang Qiuyue(杨秋月), Wu Shanshan(吴珊珊) et al. Jouranl of Plasticty Engineering[J], 2021,28(3):137-145.
    [23] Dong Xianjuan(董显娟), Lu Shiqiang(鲁世强), Wang Kelu(王克鲁) et al. Rare Metal Materials and Engineering[J],2010,39(9):1550.
    [24] Ding Yutian(丁雨田), Chen Jianjun(陈建军), Li Haifeng(李海峰) et al. Materials Reports[J],2019,33(8):2753.
    [25] Cai Zhongman, Jia Hongchao, Pei Weichi et al. Vacuum [J],2019,165:324.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈由红,兰博,孙兴,林莺莺.三联冶炼+挤压制备的GH4710合金棒材热变形行为及热加工图[J].稀有金属材料与工程,2024,53(9):2555~2564.[Chen Youhong, Lan Bo, Sun Xing, Lin Yingying. Hot deformation behavior and hot processing maps of triple-smelted GH4710 alloy after extrusion[J]. Rare Metal Materials and Engineering,2024,53(9):2555~2564.]
DOI:10.12442/j. issn.1002-185X.20230456

复制
文章指标
  • 点击次数:104
  • 下载次数: 296
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-07-23
  • 最后修改日期:2023-08-21
  • 录用日期:2023-08-24
  • 在线发布日期: 2024-09-13
  • 出版日期: 2024-09-04