+高级检索
MD模拟加载温度对Ni3Al基合金加工表面的影响
作者:
作者单位:

1.兰州理工大学 机电工程学院,甘肃 兰州 730050;2.兰州理工大学 有色冶金新装备教育部工程研究中心,甘肃 兰州 730050

基金项目:

甘肃省重点研发计划(21YF5GA080)


Effect of Loading Temperature on Processed Surface of Ni3Al-Based Alloy by MD Simulation
Author:
  • Jin Lan 1,2

    Jin Lan

    School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China;Engineering Research Center of New Nonferrous Metallurgy Equipment, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Li Kaiqiang 1,2

    Li Kaiqiang

    School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China;Engineering Research Center of New Nonferrous Metallurgy Equipment, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Yi Tinghua 1,2

    Yi Tinghua

    School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China;Engineering Research Center of New Nonferrous Metallurgy Equipment, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China;2.Engineering Research Center of New Nonferrous Metallurgy Equipment, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China

Fund Project:

Key Research and Development Project of Gansu (21YF5GA080)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为改善Ni3Al基合金的纳米切削表面质量以获得更好的服役状态,结合纳米级分子动力学模拟和微观切削实验,探讨了加载温度(300~1050 K)与切削力、表面形貌的关联性。分子动力学模拟结果显示,在纳米切削Ni3Al基合金过程中,加载温度为750 K时的切削力波动相对于其他温度最小;当加载温度在600~750 K时,影响表面形貌的凸起原子数量最少,即表明加载温度为750 K左右时,Ni3Al基合金可以获得较高的表面质量。Ni3Al基合金微观切削实验表明,当加载温度在600~750 K时,加工表面轮廓可以获得较高的平整度,间接验证了在Ni3Al基合金纳米切削的分子动力学仿真结果的可行性。研究结果表明,选取合适的加载温度是改善Ni3Al基合金纳米切削加工表面质量的有效途径。

    Abstract:

    In order to enhance the nano-cutting surface quality of Ni3Al-based alloy to obtain better service state, the nano-molecule dynamics (MD) simulation and micro-cutting experiment were combined to investigate the effect of loading temperature (300–1050 K) on cutting force and surface morphology. MD simulation results show that the fluctuation of cutting force is the smallest when the loading temperature is 750 K during nano-cutting process of Ni3Al-based alloy, compared with that at other temperatures. When the loading temperature is 600–750 K, the number of convex atoms affecting the surface morphology is the least, which indicates that Ni3Al-based alloy can achieve higher surface quality at loading temperature of about 750 K. The micro-cutting experiments of Ni3Al-based alloy show that higher flatness of the processed surface can be obtained at the loading temperature of 600–750 K, which indirectly verifies the feasibility of MD simulation results of the nano-cutting process of Ni3Al-based alloy. Results suggest that selecting appropriate loading temperature is an effective method to improve the nano-cutting surface quality of Ni3Al-based alloy.

    参考文献
    [1] Wang Mingyang, Wang Bo, Cheng Yaonan et al. Journal of Harbin University of Science and Technology[J], 2015, 20(6): 24 (in Chinese)
    [2] Thakur A, Gangopadhyay S. International Journal of Machine Tools and Manufacture[J], 2016, 100: 25
    [3] Lin Dongliang. Journal of Shanghai Jiao Tong University[J], 1998, 32(2): 97 (in Chinese)
    [4] Zhang Rui, Liu Peng, Cui Chuanyong et al. Acta Metallurgica Sinica[J], 2021, 57(10): 1215 (in Chinese)
    [5] Fu Jiabo, Wang Chenchong, Mateo Carlos Gracia et al. Materials China[J], 2023, 42(9): 722 (in Chinese)
    [6] Nan Rong, Cai Jianhua, Yang Jian et al. Titanium Industry Progress[J], 2023, 40(5): 40 (in Chinese)
    [7] Yan H J, Tian S G, Dong Z F. Rare Metal Materials and Engineering[J], 2022, 51(1): 44
    [8] Sun J X, Liu J L, Chen C et al. Rare Metal Materials and Engineering[J], 2022, 51(2): 369
    [9] Zhou Y G, Gong Y D, Cai M et al. International Journal of Advanced Manufacturing Technology[J], 2017, 90(5–8): 1749
    [10] Liu Zhanqiang, Ai Xing. Tool Engineering[J], 2001, 35(12): 3 (in Chinese)
    [11] Song Zhiwei. Tool Engineering[J], 2000, 34(9): 23 (in Chinese)
    [12] Xia Z H, Gao B C, Yu J G et al. Journal of Materials Research and Technology[J], 2022, 19: 2447
    [13] Tian Jingjing, Liang Guoxing, Huang Yonggui et al. Machinery Design & Manufacture[J], 2021(7): 109 (in Chinese)
    [14] Tian Jingjing. Simulation and Experimental Study on Machining Process of Ni3Al Based Superalloy[D]. Taiyuan: Taiyuan University of Technology, 2019 (in Chinese)
    [15] Fan Y H, Wang W Y, Hao Z P. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture[J], 2021, 235(11): 1763
    [16] Feng R C, Qi Y N, Zhu Z X et al. International Journal of Precision Engineering and Manufacturing[J], 2019, 21(5–6): 711
    [17] Chen Jinlu, Zhu Dingyi, Lin Dengyi. Materials Reports[J], 2006, 20(1): 35 (in Chinese)
    [18] Mei Bingchu, Wang Weimin, Yuan Runzhang. Journal of Wuhan University of Technology[J], 1996, 18(1): 1 (in Chinese)
    [19] Wang Xiaoming, Zhu Zuchang. Heat Treatment[J], 2010, 25(3): 6 (in Chinese)
    [20] Pawel J, Wojciech P, Zbigniew B. Materials[J], 2015, 8(5): 2537
    [21] Wei Xuelong, Zhang Jianjun, Liu Kaobin et al. Cemented Carbides[J], 2020, 37(5): 400 (in Chinese)
    [22] Han Xu. Research on the Preparation and Cutting Performance of WC-Ni3Al-Based Cemented Carbide Tool Materials[D]. Xiangtan: Hunan University of Science and Technology, 2022 (in Chinese)
    [23] Cheng Zhiqing, Fan Junyan, Liang Liang. Tool Engineering[J], 2020, 54(3): 24 (in Chinese)
    [24] Gao Qi, Gong Yadong, Zhou Yunguang. China Mechanical Engineering[J], 2016, 27(6): 801 (in Chinese)
    [25] Jiang Zhongnan. Macro-Micro Simulation Analysis on Laser Assisted Cutting of Beryllium[D]. Harbin: Harbin University of Science and Technology, 2021 (in Chinese)
    [26] Luo Liang, Yang Xiaojing, Liu Ning et al. Rare Metal Materials and Engineering[J], 2019, 48(4): 1130 (in Chinese)
    [27] Chavoshi S Z, Luo X C. Materials Science and Engineering A[J], 2016, 654(1): 400
    [28] Chavoshi S Z, Luo X C. RSC Advances[J], 2016, 6(75): 71409
    [29] Shao Zihao. Molecular Dynamics Study on Nano-cutting Defor-mation Behavior of Monocrystalline γ-TiAl Alloy[D]. Lanzhou: Lanzhou University of Technology, 2021 (in Chinese)
    [30] Frenkel D, Smit B, Ratner M A. Physics Today[J], 1997, 50(7): 66
    [31] Plimpton S. Journal of Computational Physics[J], 1995, 117(1): 1
    [32] Stukowski A. Modelling and Simulation in Materials and Engineering[J], 2010, 18(1): 2154
    [33] Tersoff J. Physical Review B[J], 1994, 49(23): 16349
    [34] Purja P G P, Mishin Y. Philosophical Magazine[J], 2009, 89(34–36): 3245
    [35] Ma Yuping, Wei Chao, Zhang Yao et al. China Surface Engineering[J], 2019, 32(3): 1 (in Chinese)
    [36] Zhao Xianggang, Hao Xiuqing, Yue Caixu et al. China Surface Engineering[J], 2022, 35(1): 34 (in Chinese)
    [37] Wang Shi. Research on Thermal Stability of Diamond and Thermal Damages of Its Tools[D]. Dalian: Dalian University of Technology, 2003 (in Chinese)
    [38] Guo Zhimeng. Superhard Materials and Tools[M]. Beijing: Metallurgical Industry Press, 1996 (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

靳岚,李开强,伊廷华.MD模拟加载温度对Ni3Al基合金加工表面的影响[J].稀有金属材料与工程,2024,53(4):1011~1020.[Jin Lan, Li Kaiqiang, Yi Tinghua. Effect of Loading Temperature on Processed Surface of Ni3Al-Based Alloy by MD Simulation[J]. Rare Metal Materials and Engineering,2024,53(4):1011~1020.]
DOI:10.12442/j. issn.1002-185X.20230552

复制
文章指标
  • 点击次数:167
  • 下载次数: 632
  • HTML阅读次数: 76
  • 引用次数: 0
历史
  • 收稿日期:2023-09-04
  • 最后修改日期:2023-11-29
  • 录用日期:2023-12-18
  • 在线发布日期: 2024-04-23
  • 出版日期: 2024-04-23