+高级检索
氧化物纤维增强陶瓷基复合材料高温力学性能及微观形貌研究
作者:
作者单位:

1.航天特种材料及工艺技术研究所;2.北京空天技术研究所;3.山东东珩国纤新材料有限公司


Study on the Mechanical Properties and microstructure of Oxide Fiber Reinforced Ceramic Matrix Composites at high Temperature
Author:
Affiliation:

1.Aerospace Institute of Advanced Materials Processing Technology,Beijing;2.Beijing Institute of Aerospace Technology;3.Shandong Dongheng Sinofibre New Material Co,Ltd,Dongying

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文研究了氧化物纤维增强陶瓷基复合材料在室温~1400℃条件下,其力学性能和微观结构随温度的变化规律。分别以氧化铝纤维和石英纤维作为增强体,采用溶胶-凝胶成型工艺制备出了氧化铝纤维增强二氧化硅复合材料(Al2O3f/SiO2)和石英纤维增强二氧化硅复合材料(SiO2f/SiO2)两种氧化物纤维增强陶瓷基复合材料。分别研究了其在室温~1400 ℃温度条件下的拉伸强度及压缩强度,并采用电子显微镜(SEM)和X射线衍射(XRD)对复合材料的微观形貌和晶相结构进行了表征。结果表明,在室温~1000 ℃条件下,氧化铝纤维增强二氧化硅复合材料的力学性能远高于石英纤维增强二氧化硅复合材料。而当温度升高到1200 ℃及以上温度时,复合材料力学性能急剧下降,基体中的二氧化硅颗粒与氧化铝纤维之间发生强结合。当温度进一步提升到1300~1400℃时生成了莫来石相和α-方石英相,界面消失导致的脆性断裂是复合材料高温失效的主要机理。

    Abstract:

    The present article focuses on the change of mechanical properties of oxide fiber reinforced ceramic matrix composites with temperature from room temperature (RT) to 1400 ℃. Alumina fiber reinforced silica composite (Al2O3f /SiO2) and quartz fiber reinforced silica composite (SiO2f/SiO2) were prepared by sol-gel process with alumina fiber and quartz fiber as reinforcement respectively. The tensile strength and compressive strength of the composites at room temperature ~1400 ℃ were investigated, and the microstructure and crystal phase structure of the composites were characterized by electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the mechanical properties of alumina fiber reinforced SiO2 composites are much higher than those of quartz fiber reinforced SiO2 composites under RT~1000 ℃. However, while the temperature was raised to 1200, the mechanical properties decrease sharply, and strong bonding occurs between silica particles and fibers. As the temperature was further increased to 1300~1400 ℃, mullite and α-quartzite phases were formed. The mechanical properties of composites are sharply decreased due to brittle fracture under the action of stress. The brittle fracture caused by the disappearance of interfaces is the main mechanism of high temperature failure of composites.

    参考文献
    [1] Cao Xiaoyan, Lin Bin, Wang Yan et al. Applied Surface Science[J], 2014, 292: 181-189.
    [2] Qiao Jian(乔健), Liu Heyi(刘和义), Cui Hongliang(崔宏亮) et al. China Ceramics(中国陶瓷)[J], 2015, 051(008):1-5.
    [3] Zhu Chengxin, Cao Feng, Xiang Yang et al. Journal of Sol-Gel Science and Technology[J], 2020, 93(1):185-192.
    [4] Kozue Matsukawa, Masamitsu Imai, Toyohiko Yano et al. Innovation in Ceramic Science and Engineering[C], 2007, 152-8550.
    [5] Liang Yanyuan(梁艳媛,) Qiu Haipeng(邱海鹏), Ma Xin(马新) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2022, 051(004): 1391-1396.
    [6] Carelli Eric, Fujita Hiroki, Yang James et al. Journal of the American Ceramic Society[J], 2010, 85(3): 595-602.
    [7] Han Guifang(韩桂芳), Zhang Litong(张立同), Cheng Laifei(成来飞). Journal of Inorganic Materials(无机材料学报)[J], 2007, 22(4):701-705.
    [8] Qiao Jian(乔健). Thesis for master[D]. Nanjing University of Science and Technology, 2015.
    [9] Tressler Richard. Composites Part A Applied Science Manufacturing[J], 1999, 30(4):429-437.
    [12] Ci Jiliang(慈吉良), Wang Qian(王茜), Liu Yichang(刘一畅) et al. Chinese patent(中国专利), CN114455962A[P], 2021.
    [13] Yang Rui(杨瑞), Jiao Jian(焦健), Lv Xiaoxu(吕晓旭) et al, Chinese patent(中国专利), CN110467473A[P], 2019.
    [14] Yin Xin(殷馨), Dai Yuanjing(戴媛静). Chemical Propellants Polymeric Materials | Chem Propell Polym Mater(化学推进剂与高分子材)[J], 2005, 3(6):27-32.
    [15] Wang Hongsheng(王洪升), Wang Chonghai(王重海), Wei Qihong(韦其红) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2012, 4 (S3):178-181.
    [16] Shi Guopu(史国普). Ceramics(陶瓷)[J], 2009, 5(1): 16-20.
    [17] Zhou Kun, Xu Jiayu, Xiao Guijian et al. Journal of Materials Processing Technology[J]. 2022, 302:117503-117517.
    [18] Ramachandran Karthikeyan, Leelavinodhan Subhashree, Antao Christian et al. Journal of the European Ceramic Society[J]. 2022(4):42.
    [19] Burgos-Montes Olga, Nieto Isabel, Moreno Rodrigo. Ceramics International[J], 2007, 33(3):327-332.[18] Iwahiro T, Nakamura Y, Komatsu R et al Journal of the European Ceramic Society[J]., 2001, 21(14):2515-2519.
    [20] Chen Hongshan(陈宏善), Ji Shengfu(季生福), Niu Jianzhong(牛建中) et al. Acta Physico-Chimica Sinic(物理化学学报)[J], 1999, 15(5): 454-457.
    [21] Zheng Yu, Wang Shubin. Applied Surface Science[J], 2012, 258(10): 4698-4701.
    相似文献
    引证文献
引用本文

慈吉良,高文博,刘健,张剑,井良霄,于志刚.氧化物纤维增强陶瓷基复合材料高温力学性能及微观形貌研究[J].稀有金属材料与工程,2024,53(11):3211~3216.[Ci Jiliang, Gao Wenbo, Liu Jian, Zhang Jian, Jing Liangxiao, Yu Zhigang. Study on the Mechanical Properties and microstructure of Oxide Fiber Reinforced Ceramic Matrix Composites at high Temperature[J]. Rare Metal Materials and Engineering,2024,53(11):3211~3216.]
DOI:10.12442/j. issn.1002-185X.20230577

复制
文章指标
  • 点击次数:217
  • 下载次数: 184
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-09-13
  • 最后修改日期:2023-09-23
  • 录用日期:2023-10-07
  • 在线发布日期: 2024-11-20
  • 出版日期: 2024-11-08