+高级检索
等离子熔丝增材制造工艺参数对RT-1400钛合金成形性的影响研究
作者:
作者单位:

西安稀有金属材料研究院有限公司

基金项目:

西安市科技计划项目:增材制造核心技术攻关项目(21ZCZZHXJS-QCY6-0009);秦创原引用高层次创新创业人才项目:QCYRCXM-2022-290、QCYRCXM-2023-032

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用二次回归正交实验方法,研究等离子熔丝增材制造不同工艺参数因素对于成形性结果的影响规律。结果表明:焊接速度对熔宽的影响最大,功率与焊接速度的交互对熔宽影响最小;送丝速度对熔高的影响最大,焊接速度的重复对熔高影响最小;功率与送丝速率的交互影响对于宽高比影响最大,焊接速度对宽高比的影响最小;熔深主要受到热输入量即功率的影响最大。二次回归模型对实际结果的预测值与实际值误差在10%以内,预测结果良好。适用于RT-1400钛合金等离子熔丝增材制造工艺为:P(焊接功率)=3 KW、WFS(送丝速度)=2.4 m/min、Ts(扫描速度)=0.2m/min、焊道间距为5.3mm、采用层间正交扫描方式。

    Abstract:

    Quadratic regression orthogonal experiment was used to study the influence of different process parameters on the formability results of plasma fuse additive manufacturing. The results show that the welding speed has the greatest influence on the welding width, and the interaction between power and welding speed has the least influence on the welding width. The effect of wire feeding speed on melting height is the greatest, and the repetition of welding speed has the least effect on melting height. The interaction between power and wire feed rate has the greatest influence on aspect ratio, and the welding speed has the least influence on aspect ratio. The melting depth is mainly affected by the heat input, that is, the power. The error between the predicted value and the actual value of the quadratic regression model is less than 10%, and the predicted result is good. It is suitable for the additive manufacturing process of RT-1400 titanium alloy plasma fuse: P(welding power)= 3KW, WFS(wire feed speed)= 2.4m /min, Ts(scanning speed)=0.2m/min, welding pass spacing is 5.3mm, using interlayer orthogonal scanning mode.

    参考文献
    [1] P.A Kobryn, S.L Semiatin, Microstructure and texture evolution during solidification processing of Ti–6Al–4V[J], Journal of Materials Processing Technology,Volume 135, Issues 2–3,2003,Pages 330-339,ISSN 0924-0136.
    [2] Kelly, S.M., Kampe, S.L. Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization[J]. Metall Mater Trans A 35, 1861–1867 (2004).
    [3] Kelly, S.M., Kampe, S.L. Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part II. Thermal modeling[J]. Metall Mater Trans A 35, 1869–1879 (2004).
    [4] E. Brandl, B. Baufeld, C. Leyens, R. Gault, Additive manufactured Ti-6Al-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications[J], Physics Procedia, Volume 5, Part B, 2010, Pages 595-606, ISSN 1875-3892.
    [5] Erhard Brandl, Achim Schoberth, Christoph Leyens, Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM) [J], Materials Science and Engineering: A, Volume 532, 2012, Pages 295-307, ISSN 0921-5093.
    [6] Koike M, Greer P, Owen K, et al. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies-Electron Beam Melting and Laser Beam Melting[J]. Materials (Basel). 2011 Oct 10;4(10):1776-1792.
    [7] L.E. Murr, E.V. Esquivel, S.A. Quinones, et al, Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V[J], Materials Characterization, Volume 60, Issue 2, 2009, Pages 96-105, ISSN 1044-580.
    [8] Al-Bermani, S.S., Blackmore, M.L., Zhang, W, et al. The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V[J]. Metall Mater Trans A 41, 3422–3434 (2010).
    [9]? R.W. Bush, C.A. Brice, Elevated temperature characterization of electron beam freeform fabricated Ti–6Al–4V and dispersion strengthened Ti–8Al–1Er[J], Materials Science and Engineering: A, Volume 554, 2012, Pages 12-21, ISSN 0921-5093.
    [11] Baufeld, B., Van der Biest, O. Dillien, S. Texture and Crystal Orientation in Ti-6Al-4V Builds Fabricated by Shaped Metal Deposition[J]. Metall Mater Trans A 41, 1917–1927 (2010).
    [12] Bernd Baufeld, Omer Van der Biest, Rosemary Gault, Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: Microstructure and mechanical properties[J], Materials Design, Volume 31, Supplement 1, 2010, Pages S106-S111, ISSN 0261-3069.
    [13] Wang, F., Williams, S., Colegrove, P. et al. Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V[J]. Metall Mater Trans A 44, 968–977 (2013).
    [14] M.J. Bermingham, D. Kent, H. Zhan, D.H. StJohn, et al. Controlling the microstructure and properties of wire arc additive manufactured Ti–6Al–4V with trace boron additions[J], Acta Materialia, Volume 91, 2015, Pages 289-303, ISSN 1359-6454.
    [15] F. Martina, J. Mehnen, S.W. Williams, et al. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti–6Al–4V, Journal of Materials Processing Technology[J], Volume 212, Issue 6, 2012, Pages 1377-1386, ISSN 0924-0136.
    [16] Sun, Z., Lv, Y., Xu, B. et al. Investigation of droplet transfer behaviours in cold metal transfer (CMT) process on welding Ti-6Al-4V alloy[J]. Int J Adv Manuf Technol 80, 2007–2014 (2015).
    [17] Zhang, J., Yang, Y., Cao, S. et al. Fine equiaxed β grains and superior tensile property in Ti–6Al–4V alloy deposited by coaxial electron beam wire feeding additive manufacturing[J]. Acta Metall. Sin. (Engl. Lett.) 33, 1311–1320 (2020).
    [18] Ping Long, Dongxu Wen, Jie Min, et al. Microstructure Evolution and Mechanical Properties of a Wire-Arc Additive Manufactured Austenitic Stainless Steel: Effect of Processing Parameter [J]. Materials 2021, 14(7), 1681.
    [19] Erik W. Grafarend, Silvelyn Zwanzig, Joseph L. Awange. Applications of Linear and Nonlinear Models [M]. Springer Cham, 978-3-030-94598-5 Published: 01 October 2022.
    [20] Moore, D.S. (1978). Statistical Analysis of Experimental Data[M]. In: Steen, L.A. (eds) Mathematics Today Twelve Informal Essays. Springer, New York, NY.
    [21] Wang Yue, Tian Hongmiao, Shao Jinyou, et al. Switchable Dry Adhesion with Step-like Micropillars and Controllable Interfacial Contact [J]. 《ACS applied materials interfaces》, 2016 (15) : 10029-10037.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张鹏飞,谢龙飞,张凌峰,姬坤海,田权伟,李恒.等离子熔丝增材制造工艺参数对RT-1400钛合金成形性的影响研究[J].稀有金属材料与工程,2024,53(12):3457~3464.[Zhang pengfei, Xie longfei, Zhang lingfeng, Ji kunhai, Tian quanwei, Li heng. Effect of plasma fuse additive manufacturing process parameters on the formability of RT-1400 titanium alloy[J]. Rare Metal Materials and Engineering,2024,53(12):3457~3464.]
DOI:10.12442/j. issn.1002-185X.20230647

复制
文章指标
  • 点击次数:116
  • 下载次数: 149
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-10-16
  • 最后修改日期:2024-03-06
  • 录用日期:2024-03-22
  • 在线发布日期: 2024-12-23
  • 出版日期: 2024-12-16