+高级检索
后处理工艺对一种激光增材制造镍基高温合金组织与性能的影响
作者:
作者单位:

1.沈阳工业大学 材料科学与工程学院,辽宁 沈阳 110870;2.中国科学院 金属研究所,辽宁 沈阳 110016

基金项目:

国防基础科研计(JCKY2020130C024)、国家科技重大专项(Y2019-VII-0011-0151)、Science Center for Gas Turbine Project(HT-P2022-C-Ⅳ-002-001)


Influence of Post-Treatment Process on Microstructure and Properties of Laser Additively Manufactured Nickel-Based Superalloy
Author:
Affiliation:

1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

Fund Project:

National Key R&D Program of China (2021YFB3700401); National Science and Technology Major Project (Y2019-VII-0011-0151); Science Center for Gas Turbine Project (HT-P2022-C-Ⅳ-002-001)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在激光增材制造过程中,镍基高温合金存在裂纹和微孔等缺陷,阻碍其在各领域应用。将热等静压(HIP)与传统热处理(HT)相结合,以获得缺陷少且性能理想的激光粉末床熔融(LPBF)镍基高温合金零件。结果表明,HIP工艺提高致密度,传统HT改善显微缺陷并提高力学性能。经HIP处理后,LPBF试样缺陷体积分数下降,经HT处理后,HIP+HT缺陷含量略有上升。经后处理后,硬度呈下降趋势,室温下,HIP+HT试样的抗拉伸强度和断后伸长率分别提高到1326 MPa和21.3%。

    Abstract:

    Defects such as cracks and micropores exist in nickel-based superalloy during laser powder bed fusion (LPBF), hindering their application in various fields. Hot isostatic pressing (HIP) was combined with conventional heat treatment (HT) to obtain LPBF nickel-based superalloy parts with ideal properties and fewer defects. The results show that HIP process can improve the densification, while the conventional HT can eliminate the micro-defects to improve the mechanical properties. After HIP treatment, the defect volume fraction of LPBF specimens decreases. After HT, the defect content of HIP+HT specimens increases slightly. After post-treatment, the hardness shows a decreasing trend, and the tensile strength and post-break elongation of HIP+HT specimens increase to 1326 MPa and 21.3%, respectively, at room temperature.

    参考文献
    [1] Geng Yaoxiang, Tang Hao, Luo Jinjie et al. Rare Metal Materials and Engineering[J], 2021, 50(3): 939 (in Chinese)
    [2] Zong Xuewen. Rare Metal Materials and Engineering[J], 2020, 49(9): 3182 (in Chinese)
    [3] Zhang Xue, Liu Changsheng. Rare Metal Materials and Engineering[J], 2021, 50(9): 3225 (in Chinese)
    [4] Jadhav A, Jadhav V S. Materials Today: Proceedings[J], 2022, 62: 2094
    [5] Zhao Y, Gong B, Wang Y et al. Materials Science and Engineering A[J], 2022, 858: 144133
    [6] Yang Xuanyi, Meng Qingshi. Rare Metal Materials and Engineering[J], 2021, 50(9): 3408 (in Chinese)
    [7] Wang Shaogang, Wang Sucheng, Zhang Lei. Acta Metallurgica Sinica[J], 2013, 49(8): 897
    [8] Wang Yifan, Yuan Xinbo, Che Qianying et al. Titanium Industry Progress[J], 2023, 40(6): 1 (in Chinese)
    [9] Mumtaz K A, Erasenthiran P, Hopkinson N. Journal of Materials Processing Technology[J], 2008, 195(1): 77
    [10] Panwisawas C, Tang Y T, Reed R C. Nature Publishing Group[J], 2020, 11(1): 2327
    [11] Dilberoglu U M, Gharehpapagh B, Yaman U et al. Procedia Manufacturing[J], 2017, 11: 545
    [12] Wang Fude. The International Journal of Advanced Manufacturing Technology[J], 2012, 58(5): 545
    [13] Gokuldoss P K, Kolla S, Eckert J. Materials[J], 2017, 10(6): 672
    [14] Ma P, Jia Y, Prashanth K G et al. Journal of Alloys and Compounds[J], 2016, 657: 430
    [15] Li N, Huang S, Zhang G et al. Journal of Materials Science & Technology[J], 2019, 35(2): 242
    [16] Vrancken B, Cain V, Knutsen R et al. Scripta Materialia[J], 2014, 87: 29
    [17] Xuan W, Zhang X, Zhao Y et al. Journal of Materials Research and Technology[J], 2021, 14: 1609
    [18] Baskov F A, Sentyurina Zh A, Kaplanskii Yu Yu et al. Materials Science and Engineering A[J], 2021, 817: 141340
    [19] Roncery M L, Lopez-Galilea I, Ruttert B et al. Advanced Engineering Materials[J], 2016, 18(8): 1381
    [20] Sun S, Teng Q, Xie Y et al. Additive Manufacturing[J], 2021, 46: 102168
    [21] Tomus D, Tian Y, Rometsch P A et al. Materials Science and Engineering A[J], 2016, 667: 42
    [22] Chlebus E, Gruber K, Ku?nicka B et al. Materials Science and Engineering A[J], 2015, 639: 647
    [23] Moussaoui K, Rubio W, Mousseigne M et al. Materials Science and Engineering A[J], 2018, 735: 182
    [24] Deng D, Peng R L, Brodin H et al. Materials Science and Engineering A[J], 2018, 713: 294
    [25] Shaji Karapuzha A, Fraser D, Zhu Y et al. Journal of Materials Science & Technology[J], 2022, 98: 99
    [26] Chauvet E, Kontis P, J?gle E A et al. Acta Materialia[J], 2018, 142: 82
    [27] Tillmann W, Schaak C, Nellesen J et al. Additive Manufactur- ing[J], 2017, 13: 93
    [28] Yuan Z, Chang F, Chen A et al. Materials Science and Engineering A[J], 2022, 852: 143714
    [29] Bai Jie, Ma Rui, Wang Yajun et al. Journal of Hebei Engineering University (Natural Science Edition)[J],2023, 40(3): 1062 (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈爽,杨彦红,郭志强,梁静静,李金国,周亦胄.后处理工艺对一种激光增材制造镍基高温合金组织与性能的影响[J].稀有金属材料与工程,2024,53(9):2478~2484.[Chen Shuang, Yang Yanhong, Guo Zhiqiang, Liang Jingjing, Li Jinguo, Zhou Yizhou. Influence of Post-Treatment Process on Microstructure and Properties of Laser Additively Manufactured Nickel-Based Superalloy[J]. Rare Metal Materials and Engineering,2024,53(9):2478~2484.]
DOI:10.12442/j. issn.1002-185X.20230813

复制
文章指标
  • 点击次数:187
  • 下载次数: 348
  • HTML阅读次数: 46
  • 引用次数: 0
历史
  • 收稿日期:2023-12-15
  • 最后修改日期:2024-07-30
  • 录用日期:2024-02-01
  • 在线发布日期: 2024-09-12
  • 出版日期: 2024-09-04