+高级检索
电极电位解释阳极氧化物的生长
作者:
作者单位:

1.南京理工大学 软化学与功能材料教育部重点实验室,江苏 南京 210094;2.江苏城乡建设职业学院,江苏 常州 213147

基金项目:

The National Natural Science Foundation of China (Grant Nos. 51577093, 51777097), the Natural Science Foundation of Jiangsu Higher Education Institutions (20KJB430040), Changzhou Science & Technology Program (CJ20200026) and the Qing Lan Project in Colleges and Universities of Jiangsu Province.


Electrode Potential Explaining the Growth of Anodic Oxides
Author:
Affiliation:

1.Key Laboratory of Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China;2.Jiangsu Urban and Rural Construction College, Changzhou 213147, China

Fund Project:

National Natural Science Foundation of China (51577093, 51777097); Natural Science Foundation of Jiangsu Higher Education Institutions (20KJB430040); Changzhou Science & Technology Program (CJ20200026); Qing Lan Project in Colleges and Universities of Jiangsu Province

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    多孔阳极氧化物的形成机理至今仍不清楚。研究者倾向于用物理模型来解释它们的生长机理,很少报道电极电位对阳极氧化的影响,因为阳极氧化电压远远高于电极电位。创新性地引入电极电位理论、氧气气泡模型以及离子电流和电子电流理论来解释3种金属(Ti、Zr和Fe)在低电压下多孔阳极氧化物的生长机理。以Ti在0.5%(质量分数)NH4F水溶液中的阳极氧化为例,计算了电极电位,解释了在低电压下多孔阳极氧化物的形貌。结果表明,多孔阳极氧化物的生长由离子电流和电子电流的比值决定。阳极氧化过程中的金属分为2类:一类是容易形成致密氧化层的金属,另一类是容易导致氧气析出的金属。相应的,电解液也被分为2类:容易形成致密氧化层的电解液和容易导致氧气析出的电解液。

    Abstract:

    The formation mechanism of porous anodic oxides remains unclear till now. The classical field-assisted dissolution (FAD) theory cannot explain the relationship between the current curve and FAD reaction, and the influence of the electrode potential on anodization is rarely reported. The electrode potential theory, oxygen bubble model and the ionic current and electronic current theories were introduced to explain the growth of porous anodic oxides of three metals (Ti, Zr and Fe). Taking the anodization of Ti in aqueous solution containing 0.5wt% NH4F as an example, the electrode potential was calculated, and the morphology of porous anodic oxides was investigated at low voltages. Results show that the growth of porous anodic oxides is determined by the ratio of the ionic current to the electronic current. During the anodization, metals are classified into two groups: one is easy to form the compact oxide layer, and the other is easy to induce oxygen releasing, thus forming oxygen bubbles. The electrolyte is also classified into two groups correspondingly: compact oxide layer-assisted electrolyte and releasing oxygen-assisted electrolyte.

    参考文献
    [1] Kai, Guo Baoquan, Zhang Yaping et al. Rare Metal Mater- ials and Engineering[J], 2019, 48(8): 2474
    [2] Guo Yupeng, Di Shichun, Lü Pengxiang et al. Rare Metal Materials and Engineering[J], 2015, 44(9): 2240 (in Chinese)
    [3] Ji X, Zhang H T, Ye N C et al. Molecular Catalysis[J], 2023, 549: 113463
    [4] Chai Ruxia, He Zhifeng, Xia Yafeng et al. Titanium Industry Progress[J], 2024, 41(1): 41 (in Chinese)
    [5] Nan Rong, Cai Jianhua, Yang Jian et al. Titanium Industry Progress[J], 2023, 40(5): 40 (in Chinese)
    [6] Wang Q Y, Zhao Y H, Zhang Z F et al. Ceramics Interna- tional[J], 2023, 49(4): 5977
    [7] Xu D Y, Zhao H, Zhen C M. Microporous and Mesoporous Materials[J], 2024, 363: 112849
    [8] Zhang W G, Sun Y T, Tian R F et al. Surface & Coatings Technology[J], 2023, 469: 129783
    [9] Zhang Y, Chen Y Z, Liu Y et al. Rare Metal Materials and Engineering[J], 2024, 53(5): 1310
    [10] Broens M I, Cervantes W R, Collao A M A et al. Journal of Electroanalytical Chemistry[J], 2023, 935: 117314
    [11] Leclere D J, Velota A, Skeldon P et al. Journal of The Electrochemical Society[J], 2008, 155(9): C487
    [12] Hebert K R, Albu S P, Paramasivam I et al. Nature Materials[J], 2012, 11(2): 162
    [13] Kowalski D, Kim D, Schmuki P et al. Nano Today[J], 2013, 8(3): 235
    [14] Wang X M, Zhang F Q. Transactions of Nonferrous Metals Society of China[J], 2022, 32(7): 2243
    [15] Yu M S, Cui H M, Ai F P et al. Electrochemistry Communications[J], 2018, 86: 80
    [16] Zhang Z Y, Liu Q Q, He M F et al. Journal of The Electrochemical Society[J], 2020, 167(11): 113501
    [17] Peng K W, Liu L, Zhang J Z et al. Electrochemistry Communications[J], 2023, 148: 107457
    [18] Cao J W, Gao Z Q, Wang C et al. Surface & Coatings Technology[J], 2020, 388: 125592
    [19] Liao L, Huang W G, Cai F G et al. Journal of Materials Science-Materials in Electronics[J], 2021, 32(7): 9540
    [20] Zhou X Y, Ma C Y, Yang J et al. Rare Metal Materials and Engineering[J], 2018, 47(10): 3008
    [21] Xiao T T, Zhao J L, Wang X L et al. Materials Chemistry and Physics[J], 2020, 240: 122179
    [22] Cao S K, Huang W Q, Wu L Z et al. Langmuir[J], 2018, 34(46): 13888
    [23] Bai L, Zhao Y, Chen P R et al. Small[J], 2021, 17(4): 2006287
    [24] Zhou X M, Nguyen N T, ?zkan S et al. Electrochemistry Communications[J], 2014, 46: 157
    [25] Patel S N, Jayaram V, Banerjee D. Surface & Coatings Technology[J], 2017, 323: 2
    [26] Ni Y L, Li C Y, Chen J D et al. Ceramics International[J], 2022, 48(1): 495
    [27] Oh J, Thompson C V. Electrochimica Acta[J], 2011, 56(11): 4044
    [28] Gong T L, Li C Y, Li X et al. Nanoscale Advances[J], 2021, 3(16): 4659
    [29] Deng P Y, Bai X D, Chen X W et al. Journal of The Electrochemical Society[J], 2004, 151(5): B284
    [30] Zhu X F, Liu L, Song Y et al. Monatshefte für Chemie[J], 2008, 139(9): 999
    [31] Zhu X F, Song Y, Liu L et al. Nanotechnology[J], 2009, 20(47): 475303
    [32] Albella J M, Montero I, Martinez-Duart J M. Electrochimica Acta[J], 1987, 32(2): 255
    [33] Li C Y, Luo K, Yan B W et al. The Journal of Physical Chemistry C[J], 2023, 127(20): 9707
    [34] Dean J A. Mater Manuf Process[J], 1978, 5(4): 687
    [35] Zhang Y, Li P Z, Wang S Y et al. The Journal of Physical Chemistry C[J], 2023, 127(32): 16148
    [36] Zhu X F, Han H, Song Y et al. Acta Physica Sinica[J], 2012, 61(22): 228202
    [37] Wang A C, Li C Y, Jiang L F et al. Ceramics International[J], 2022, 48(19): 27703
    [38] Garacia-Vergara S J, Skeldon P, Thompson G E et al. Electrochimica Acta[J], 2006, 52(2): 681
    [39] Houser J E, Hebert K R. Nature Materials[J], 2009, 8(5): 415
    [40] Martin-Gonzalez M, Martinez-Moro R, Aguirre M H et al. Electrochimica Acta[J], 2020, 330: 135241
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蒋龙飞,龚天乐,李鹏泽,张少瑜,陈滨掖,朱云暄,王冰,朱绪飞.电极电位解释阳极氧化物的生长[J].稀有金属材料与工程,2024,53(9):2485~2492.[Jiang Longfei, Gong Tianle, Li Pengze, Zhang Shaoyu, Chen Binye, Zhu Yunxuan, Wang Bing, Zhu Xufei. Electrode Potential Explaining the Growth of Anodic Oxides[J]. Rare Metal Materials and Engineering,2024,53(9):2485~2492.]
DOI:10.12442/j. issn.1002-185X.20230843

复制
文章指标
  • 点击次数:198
  • 下载次数: 280
  • HTML阅读次数: 32
  • 引用次数: 0
历史
  • 收稿日期:2023-12-27
  • 最后修改日期:2024-03-22
  • 录用日期:2024-03-26
  • 在线发布日期: 2024-09-12
  • 出版日期: 2024-09-04