+高级检索
氮化铀压力辅助烧结过程的相场模拟
作者:
作者单位:

1.中核反应堆辐照特种元件制备工艺重点实验室,内蒙古 包头 014035;2.中核北方核燃料元件有限公司,内蒙古 包头 014035;3.西安交通大学 核科学与技术学院,陕西 西安 710049

作者简介:

柳文波,男,1984年生,博士,副教授,西安交通大学核科学与技术学院,陕西 西安710049,电话:029-82668648,E-mail: liuwenbo@xjtu.edu.cnWenbo Liu, Ph. D., Associate Professor, School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China, Tel: 0086-29-82668648, E-mail: liuwenbo@xjtu.edu.cn

中图分类号:

TL211.1+.3

基金项目:

国家自然科学基金委员会与中国工程物理研究院联合基金(NSAF基金)(U2130105)


Phase Field Simulation of Pressure-Assisted Sintering Process of Uranium Nitride
Author:
Affiliation:

1.CNNC Key Laboratory on Fabrication Technology of Reactor Irradiation Special Fuel Assembly, Baotou 014035, China;2.China North Nuclear Fuel Co., Ltd, Baotou 014035, China;3.School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China

Fund Project:

the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF Joint Fund) (Grant No. U2130105)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    通过引入弹性应变能和颗粒刚体运动过程,建立了UN压力辅助烧结过程的相场模型,分析了应力对烧结颈增长过程、颗粒刚体运动对孔隙收缩过程的影响,并模拟了物质扩散、刚体运动与应力共同作用下的多颗粒烧结过程。模拟结果表明,烧结颈长度及其增长速率随施加应变的增大而增大,在烧结颈两端出现明显的应力集中现象,且随着时间的延长,应力分布逐渐均匀化;随着平移迁移率的增加,孔隙收缩速率增大,其致密化完成时间提前,而转动迁移率的取值对孔隙收缩过程几乎无影响。本模型能够捕捉到烧结颈的形成和增长、孔隙的球化和闭合过程,大体积孔隙表面配位的晶粒数更高,存在时间更长。

    Abstract:

    The pressure applied during the sintering process plays an important role in improving the final density of UN pellets. In this work, a phase field model of UN pressure-assisted sintering was established by introducing elastic strain energy and particle rigid motion process. The effects of stress on the growth of sintering neck and rigid-body motion on the pore shrinkage were analyzed, and the multi-particle sintering process under the three mechanisms was simulated. The simulation results show that the length of the sintering neck and its growth rate increase with the increase in the applied strain. There is obvious stress concentration at both ends of the sintering neck, and the stress distribution gradually becomes uniform with the increase in time. With the increase in translational mobility, the pore shrinkage rate increases, and the densification completion time is advanced, while the value of rotational mobility has little effect on the pore shrinkage process. The model can capture the formation and growth of the sintering neck, the spheroidization and closure of the pores. The coordination grain number of large volume pores is higher and the existence time is longer.

    参考文献
    [1] Hayes S L, Thomas J K, Peddicord K L. Journal of Nuclear Materials[J], 1990, 171(2–3): 289
    [2] Fink J K. Journal of Nuclear Materials[J], 2000, 279(1): 1
    [3] Giudicelli G. Achievable Power Uprates in Pressurized Water Reactors Using Uranium Nitride Fuel[D]. Cambridge: Massachusetts Institute of Technology, 2017
    [4] Yin Bangyue(尹邦跃), Qu Zhehao(屈哲昊). Atomic Energy Science and Technology(原子能科学与技术)[J], 2014, 48(10): 1850
    [5] Matthews R B, Chidester K M, Hoth C W et al. Journal of Nuclear Materials[J], 1988, 151(3): 345
    [6] Li Zongshu(李宗书), Shao Zongyi(邵宗义), Liu Wentao(刘文 涛) et al. Atomic Energy Science and Technology(原子能科学与技术)[J], 2021, 55(S2): 276
    [7] Muta H, Kurosaki K, Uno M et al. Journal of Materials Science[J], 2008, 43: 6429
    [8] Yang K, Kardoulaki E, Zhao D et al. Journal of Nuclear Materials[J], 2021, 557: 153272
    [9] Johnson K D, Wallenius J, Jolkkonen M et al. Journal of Nuclear Materials[J], 2016, 473: 13
    [10] Liu M J, Xu L J, Li Z et al. Rare Metal Materials and Engineering[J], 2024, 53(5): 1236
    [11] Wang Hui(王 慧), Ding Chenshi(丁晨师), Xie Zhuoming(谢卓明) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2024, 53(5): 1321
    [12] Shi R, Wood M, Heo T W et al. Journal of the European Ceramic Society[J], 2021, 41(16): 211
    [13] German R M. Critical Reviews in Solid State and Materials Sciences[J], 2010, 35(4): 263
    [14] Seiz M. Computational Materials Science[J], 2022, 215: 111756
    [15] Han Yao(韩 耀), Li Haiyan(李海燕), Xie Zhipeng(谢志鹏) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2020, 49(2): 639
    [16] Zhao Y H. Materials Genome Engineering Advances[J], 2024, 2(2): 44
    [17] Ahmed K, Yablinsky C A, Schulte A et al. Modelling and Simulation in Materials Science and Engineering[J], 2013, 21(6): 065005
    [18] Biswas S, Schwen D, Tomar V. Journal of Materials Science[J], 2018, 53: 5799
    [19] Tan S L, Zhang X M, Zhao Z P et al. Ceramics International[J], 2020, 46(8): 11584
    [20] Seiz M, Hierl H, Nestler B et al. Scientific Reports[J], 2024, 14(1): 5350
    [21] Dzepina B, Balint D, Dini D. Journal of the European Ceramic Society[J], 2019, 39(2–3): 173
    [22] Chen L Q, Zhao Y H. Progress in Materials Science[J], 2022, 124: 100868
    [23] Zhao Y H, Hui X, Zhang L J et al. Acta Metallurgica Sinica[J], 2023, 36(11): 1749
    [24] Zhao Y H. npj Computational Materials[J], 2023, 9(1): 94
    [25] Wang Y U. Acta Materialia[J], 2006, 54(4): 953
    [26] Ahmed K, Pakarinen J, Allen T et al. Journal of Nuclear Materials[J], 2014, 446(1–3): 90
    [27] Wang Y U, Jin Y M, Khachaturyan A G. Journal of Applied Physics[J], 2002, 92(3): 1351
    [28] Jiang Yanbo(姜彦博), Liu Wenbo(柳文波), Sun Zhipeng(孙志鹏) et al. Acta Physica Sinica(物理学报)[J], 2022, 71(2): 233
    [29] Cahn J W. Acta Metallurgica[J], 1961, 9(9): 795
    [30] Allen S M, Cahn J W. Acta Metallurgica[J], 1979, 27(6): 1085
    [31] Weaver S C. Helium Gas Bubble Migration in Uranium Mononitride in a Temperature Gradient[D]. Knoxville: University of Tennessee, 1967
    [32] Qi Xiaoyong(戚晓勇), Liu Wenbo(柳文波), He Zongbei(何宗倍) et al. Acta Metallurgica Sinica(金属学报)[J], 2023, 59(11): 1513
    [33] AbdulHameed M, Beeler B, Galvin C O T et al. Journal of Nuclear Materials[J], 2024, 600: 155247
    [34] German R. Sintering of Advanced Materials[M]. Cambridge: Elsevier, 2010: 3
    [35] Liu Y, Zhang H, Wang L et al. Soldering & Surface Mount Technology[J], 2019, 31(1): 20
    [36] Guo Q W, Hou H, Wang K L et al. npj Computational Materials[J], 2023, 9(1): 185
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙启明,申文龙,廖宇轩,李昱,王纪钧,柳文波.氮化铀压力辅助烧结过程的相场模拟[J].稀有金属材料与工程,2025,54(3):671~678.[Sun Qiming, Shen Wenlong, Liao Yuxuan, Li Yu, Wang Jijun, Liu Wenbo. Phase Field Simulation of Pressure-Assisted Sintering Process of Uranium Nitride[J]. Rare Metal Materials and Engineering,2025,54(3):671~678.]
DOI:10.12442/j. issn.1002-185X.20240497

复制
文章指标
  • 点击次数:11
  • 下载次数: 34
  • HTML阅读次数: 24
  • 引用次数: 0
历史
  • 收稿日期:2024-08-08
  • 最后修改日期:2024-12-03
  • 录用日期:2024-12-03
  • 在线发布日期: 2025-03-25
  • 出版日期: 2025-03-25