+高级检索
电弧增材制造Mg-4Y-3Nd-0.5Zr合金微观组织与力学性能
作者:
作者单位:

1.北京航空航天大学 机械工程及自动化学院,北京 100191;2.首都航天机械有限公司,北京 100076

中图分类号:

TG146.22

基金项目:

国家自然科学基金(52475317,52305331)


Microstructure and Mechanical Properties of Mg-4Y-3Nd-0.5Zr Alloy Fabricated by Wire Arc Additive Manufacturing
Author:
Affiliation:

1.School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China;2.Capital Aerospace Machinery Co., Ltd, Beijing 100076, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用电弧增材制造技术制备了WE43(Mg-4Y-3Nd-0.5Zr,质量分数,%)镁稀土合金单壁墙构件,并通过多尺度组织表征、显微硬度和拉伸测试等手段系统研究了沉积态WE43合金的微观组织及其力学性能。此外,对比研究了直接时效处理(T5)和固溶+时效处理(T6)对微观组织演化行为和力学性能的影响。结果表明,沉积态WE43合金为均匀全等轴晶组织,平均晶粒尺寸为25.3 μm,晶界处存在网状共晶组织(α-Mg+Mg41Nd5/Mg24Y5),沉积态合金的抗拉强度可达到190 MPa。经T5处理后,峰值时效硬度由沉积态的74 HV0.2提升至91 HV0.2,基体中存在大量残留共晶组织。T6热处理可获得更高的峰值时效硬度(108 HV0.2),共晶组织充分回溶,基体中残留少量的Mg24Y5相。T6处理使得合金抗拉强度提升至283 MPa,但也容易引发明显的晶粒异常长大现象,且沿竖直方向的延伸率显著低于水平方向。

    Abstract:

    A WE43 (Mg-4Y-3Nd-0.5Zr, wt%) magnesium-rare earth alloy thin-wall component was fabricated by wire arc additive manufacturing, and its microstructure and mechanical properties were investigated by multiscale characterization, microhardness, and tensile tests. The influences of direct aging (T5) and solid solution+aging (T6) on the microstructure evolution and mechanical properties were studied. Results indicate that the as-deposited WE43 alloy has a uniform equiaxed crystal matrix, with an average grain size of 25.3 μm. Reticulated eutectic structure (α-Mg+Mg41Nd5/Mg24Y5) is formed due to Nd and Y element liquid segregation at grain boundaries. Tensile strength of as-deposited alloys is 190 MPa. Peak hardness increases from 74 HV0.2 to 91 HV0.2 after T5 aging with persistence of significant eutectic structures. Peak aging hardness is 108 HV0.2 after T6 treatment, and the eutectic structure is dissolved completely, while a small amount of Mg24Y5 remains in matrix. Tensile strength of alloys is enhanced to 283 MPa after T6 treatment, but it also induces significant grain growth and reduces the elongation in vertical direction more obviously than in horizontal direction.

    参考文献
    [1] Sun Decong(孙德聪), Chen Shuaifeng(陈帅峰), Song Guang- sheng(宋广胜) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2024, 53(3): 882
    [2] Ding Wenjiang(丁文江), Fu Penghuai(付彭怀), Peng Liming(彭立明) et al. Spacecraft Environment Engineering(航天器环境工程)[J], 2011, 28(2): 103
    [3] Debroy T, Wei H L, Zuback J S et al. Progress in Materials Science[J], 2018, 92: 112
    [4] Li Kun(李 坤), Ji Chen(吉 辰), Bai Shengwen(白生文) et al. Journal of Mechanical Engineering(机械工程学报)[J], 2024, 60(7): 290
    [5] Li K, Ma R J, Qin Y et al. Journal of Materials Processing Technology[J], 2023, 318: 118032
    [6] Abdul H M Y, Ahmed A, Mohammed R A K et al. Corrosion Engineering, Science and Technology[J], 2021, 56(4): 310
    [7] Ma D, Xu C, Qi Y et al. Journal of Alloys and Compounds[J], 2023, 962: 171041
    [8] Chen F, Cai X, Dong B Q et al. Journal of Materials Research and Technology[J], 2023, 27: 2089
    [9] Wei J, He C, Qie M et al. Journal of Materials Processing Technology[J], 2023, 311: 117809
    [10] Takagi H, Sasahara H, Abe T et al. Additive Manufacturing[J], 2018, 24: 498
    [11] He Bochang(贺铂昌), Zhang Ruize(张睿泽), Cao Qianhui(曹千卉) et al. Welding Technology (焊接技术)[J], 2022, 51(1): 1
    [12] Wu Yujuan(吴玉娟), Ding Wenjiang(丁文江), Peng Liming(彭立明) et al. Materials China(中国材料进展)[J], 2011, 30(2): 1
    [13] Tong X, Wu G, Easton M A et al. Additive Manufacturing[J], 2023, 67: 103487
    [14] Jiang H S, Zheng M Y, Qiao X G et al. Materials Science and Engineering A[J], 2017, 684: 158
    [15] Cong Baoqiang(从保强), Sun Hongye(孙红叶), Peng Peng(彭鹏) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2017, 46(5): 1359
    [16] Zeng C Y, Cai X Y, Qi Z W et al. Journal of Alloys and Compounds[J], 2023, 964: 171331
    [17] Zhang C, Li Y, Gao M et al. Materials Science and Engineering A[J], 2018, 711: 415
    [18] Yang X, Liu J, Wang Z et al. Materials Science and Engineering A[J], 2020, 774, 138942
    [19] Li Jiehua(李杰华), Jie Wanqi(介万奇), Yang Guangyu(杨光昱). Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2010, 39(1): 101
    [20] Feng Yicheng(冯义程), Wang Lei(王 雷), Fu Yuanliao(付原料) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2021, 50(5): 1826
    [21] Cao Q H, Zeng C Y, Qi B J et al. Additive Manufacturing[J], 2023, 67: 103498
    [22] Hu Gengxiang(胡庚祥), Cai Xun(蔡 珣), Rong Yonghua(戎咏华). Fundamentals of Materials Science(材料科学基础)[M]. Shanghai: Shanghai Jiao Tong University Press, 2000: 87
    [23] Wu G, Tong X, Wang C et al. Journal of Magnesium and Alloys[J], 2023, 11(10): 3463
    [24] Yang W Z, Yang H O, Yang K T et al. Virtual and Physical Prototyping[J], 2024, 19(1): 2386592
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

常子金,张睿泽,曾才有,俞楷,李子琪,从保强.电弧增材制造Mg-4Y-3Nd-0.5Zr合金微观组织与力学性能[J].稀有金属材料与工程,2025,54(3):706~713.[Chang Zijin, Zhang Ruize, Zeng Caiyou, Yu Kai, Li Ziqi, Cong Baoqiang. Microstructure and Mechanical Properties of Mg-4Y-3Nd-0.5Zr Alloy Fabricated by Wire Arc Additive Manufacturing[J]. Rare Metal Materials and Engineering,2025,54(3):706~713.]
DOI:10.12442/j. issn.1002-185X.20240675

复制
文章指标
  • 点击次数:9
  • 下载次数: 24
  • HTML阅读次数: 20
  • 引用次数: 0
历史
  • 收稿日期:2024-10-17
  • 最后修改日期:2024-11-28
  • 录用日期:2024-12-03
  • 在线发布日期: 2025-03-25
  • 出版日期: 2025-03-25