+高级检索
Cr、Mn、Zr、Ti微合金化对Al-Zn-Mg-Cu-Yb合金再结晶、第二相和断裂行为的影响
作者:
作者单位:

粉末冶金国家重点实验室

中图分类号:

TG 146.21

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Effect of Minor Cr, Mn, Zr or Ti on Recrystallization,SSecondary Phases and Fracture Behaviour of Al-Zn-Mg-Cu-Yb Alloys
Author:
Affiliation:

State Key Laboratory of Powder Metallurgy,Central South University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用拉伸测试,结合XRD、TEM、SEM和EBSD等物相和微观结构表征,研究了单独添加Cr、Mn、Zr、Ti对Al-Zn-Mg-Cu-Yb合金第二相(特别是AlCuYb相)析出、基体再结晶行为和拉伸沿晶断裂的影响。研究结果表明:在同时添加Yb和Cu的铝合金中,微米级、粗大AlCuYb相的析出难以避免。但有趣的是,进一步添加Mn的合金中,由于析出了亚微米的Al20Cu2Mn3相,可有效减少粗大AlCuYb相,在四种合金中形成的粗大相的数量最少。Al-Zn-Mg-Cu-Yb合金中添加Zr,可析出纳米级 Al3(Yb, Zr)弥散相,有效抑制结晶,但是AlCuYb相的形成消耗Yb元素,降低了二次共格Al3(Yb, Zr)弥散相的析出,此外粗大AlCuYb相颗粒诱发局部再结晶,一定程度降低了合金的强度。T6态 Al-Zn-Mg-Cu-Yb-Zr和Al-Zn-Mg-Cu-Yb-Mn合金经固溶后仍保持未再结晶纤维状结构,小角度再结晶分数高达50%以上,平均晶粒尺寸降至2~7 μm。相比之下,添加Cr或Ti的Al-Zn-Mg-Cu-Yb合金形成的均匀的再结晶晶粒,大角度再结晶分数高达80%,平均晶粒尺寸为40-96 μm。断裂时,尺寸1~3 μm的初生Al2CuMg相(而非粗大AlCuYb相)优先诱发断裂,裂纹沿析出相连续、粗大且无沉淀析出相宽化的大角度再结晶晶界或原始晶界扩展。

    Abstract:

    The effects of sole Cr, Mn, Zr, Ti addition on the precipitation of secondary phases (especially AlCuYb), matrix recrystallization behaviour and tensile intergranular fracture of an AlZnMgCuYb based alloy has been investigated by using tensile test, together with detailed microstructural characterization XRD, TEM, SEM, and EBSD technique. The results indicate that coarse micro-scaled AlCuYb phase precipitated can not be inevitable in the Yb and Cu containing Al alloy. It is interesting that the least coarsen phases are formed in the AlZnMgCuYb-Mn alloy due to the precipitation of submicro-scaled Al20Cu2Mn3 phase resulting in the effective decreasing of coarse AlCuYb phases. The addition of Zr to AlZnMgCuYb alloy can effectively inhibit the recrystallization of ɑ(Al) matrix by the formation of nano-scale coherent Al3(Yb, Zr) dispersoids. However, the formation of AlCuYb phases consuming Yb will reduce secondary coherent Al3(Yb, Zr) precipitation and particleSstimulated partial recrystallization nucleation, resulting in a decline in strength of AlZnMgCuYb-Zr alloy. T6-tempered AlZnMgCuYb-Zr and AlZnMgCuYb-Mn alloys still remain an unrecrystallized fiber-like structure, the fraction of low-angle grain boundaries (LAGBs) increased up to 50%, and the average grain size decreased to 2~7 μm. However, more homogeneous recrystallization grains are observed in Cr or Ti containing AlZnMgCuYb alloy, the fraction of high-angle grain boundaries (HAGBs) and the average grain size achieve 80% and 40-96 μm, respectively. The primary 1~3 μm Al2CuMg particles, not coarse AlCuYb preferentially cracked, and cracking propagated along high-angle recrystallized grain boundaries or original grain boundaries with continuous, coarser grain boundary precipitates and broadening precipitate-freeSzones (PFZs) at its periphery.

    参考文献
    Huda Z, Edi P. Materials Design[J], 2013, 46: 552
    Williams J C, Strake Jr E A. Acta Materialia[J], 2003, 51(19): 5775
    Song R G, Dietzel W, Zhang B J, et al. Acta Materialia[J], 2004, 52 (16): 4727
    Marlaud T,SDeschamps A,SBley F,Set al. Acta Materialia[J], 2010, 58: 248
    Knight S P, Birbilis N, Muddle B C, et al. Corrosion Science[J], 2010,S52 (12): 4073
    Kannan M B, Raja V S. Engineering Fracture Mechanics[J], 2010, 77: 249
    Minoda T, Yoshida H. Metall. Metallurgical and Materials Transactions A[J],S2002, 33: 2891
    Senkov O N,SShagiev M R,SSenkova S V,Set al. Acta Materialia[J], 2008, 56 (15): 3723
    Liu J,SYao P, Zhao N Q, et al. Journal ofSAlloysSand Compounds[J], 2016, 657: 717
    Shi Y J,SPan Q L,SLi M J,Set al. Journal ofSAlloysSand Compounds[J], 2014,S612: 42
    Wu H,SWen S P,SHuang H,Set al. Journal ofSAlloysSand Compounds[J], 2016, 685: 869
    Wu H,SWen S P,SHuang H,Set al. Materials Science and EngineeringSA[J], 2017, 689: 313
    Fang H C,SChao H,SChen K H. Journal ofSAlloysSand Compounds[J], 2015, 622(15): 166
    Fang H C,SLuo F H,SChen K H. Materials Science and EngineeringSA[J], 2017, 684: 480
    Peng G S, Chen K H, Fang H C, et al. Materials Design[J], 2012, 36: 279
    Fang H C,SChen K H,SChen X, et al. Corrosion Science[J], 2009, 51 (12): 2872
    Robson J D,SPrangnel P B. Materials Science and EngineeringSA[J], 2003, 352 (1-2): 240
    Guo Z Y,SZhao G,SChen X G. MaterialsSCharacterization[J], 2015, 102: 122
    Li X M, Starink M J. Materials Science and EngineeringSA[J], 2011,S509 (2): 471
    Li C B,SHan S Q,SLiu S D,Set al. Transactions ofSNonferrousSMetals Society ofSChina[J], 2016, 26 (9): 2276
    Du J D,SDing Y,SZhang W L,Set al. MaterialsSCharacterization[J], 2018, 142: 252
    Gao T,SZhang Y R,SLiu X F. Materials Science and EngineeringSA[J], 2014, 598: 293
    Chen X, Liu Z Y, Bai S, et al. Journal ofSAlloysSand Compounds[J], 2010, 505: 201
    Wang S H, Meng L G, Yang S J, et al. Transactions ofSNonferrousSMetals Society ofSChina[J], 2011, 21(7): 1449
    Dorin T,SRamajayam M,SLamb J, et al. Materials Science and EngineeringSA[J], 2017, 707: 58
    Yanson T I, Manyako N B, Bodak O I, et al. Journal ofSAlloysSand Compounds[J], 1995, 219 (1-2): 219
    Nes E,SRyum N, Hundert O. Acta Materialia[J], 1985, 33(1):S11
    Vatne H E,SFuru T,S?rsund R, et al. Acta Materialia[J], 1996, 44 (11):S4463
    Cvijovi? Z,SVratnica M,SCvijovi?-Alagi? I. Procedia Engineering[J], 2009, 1 (1): 35
    Li B,Wang X M, Chen H, et al. Journal ofSAlloysSand Compounds[J], 2016, 678: 160
    Cvijovi? Z,SRakin M,SVratnica M, et al. Engineering Fracture Mechanics[J], 2008, 75: 2115
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

方华婵,杨海林,朱佳敏,肖鹏. Cr、Mn、Zr、Ti微合金化对Al-Zn-Mg-Cu-Yb合金再结晶、第二相和断裂行为的影响[J].稀有金属材料与工程,2020,49(3):797~810.[Fang Huachan, Yang Hailin, Zhu Jiaming, Xiao Peng. Effect of Minor Cr, Mn, Zr or Ti on Recrystallization, SSecondary Phases and Fracture Behaviour of Al-Zn-Mg-Cu-Yb Alloys[J]. Rare Metal Materials and Engineering,2020,49(3):797~810.]
DOI:10.12442/j. issn.1002-185X. E20180033

复制
文章指标
  • 点击次数:687
  • 下载次数: 537
  • HTML阅读次数: 116
  • 引用次数: 0
历史
  • 收稿日期:2018-10-29
  • 最后修改日期:2020-02-28
  • 录用日期:2019-01-10
  • 在线发布日期: 2020-04-08