+高级检索
电子束冷床炉熔炼超长超薄TC4铸锭过程中坩埚的尺寸设计
作者:
作者单位:

中国船舶中国集团第七二五研究所


Design of crucible’s size during EBCHM for ultra-long and ultra-thin TC4 ingot
Affiliation:

Titanium alloy

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    钛锭固液界面形貌对其凝固组织有着很大的影响。本文研究了超长超薄TC4扁锭EB炉熔炼中结晶器三维尺寸对固液界面形貌的影响。结果表明:当TC4扁锭截面长度超过450mm时,结晶器的冷却能力不再增加。当长度超过有效距离时,随着结晶器长度的增加,熔池深度和糊状区宽度不再发生改变。此外,提高结晶器的长宽比有利于提高TC4扁锭的表面质量。计算结果表明,结晶器内长和内宽比应在4:1和6:1之间。当结晶器高度大于300mm时,熔池深度和糊状区宽度不变。因此,通过本文研究可以为EBCHM熔炼超长超薄TC4扁锭的结晶器三维设计提供一定的设计依据。

    Abstract:

    Solid-liquid interface morphology of the titanium ingot has great influence on the microstructure during the solidification process. This paper focused on the effect of Crystallizer"s 3D dimension of the ultra-long and ultra-thin TC4 slab ingot on the solid-liquid interface morphology. The results show that when the cross-section length of TC4 slab ingot exceeds 450mm, the cooling capacity of the crystallizer does not increase. When the length exceeds the effective distance, the depth of molten pool and the width of mushy zone will not change with the increase of the length in the crystallizer. Moreover, increasing the ratio of the crystallizer’s length to width is helpful to improve the production quality. The simulation results show that it is better to choose between 4:1 and 6:1. When the height of the crystallizer is higher than 300mm, the depth of the molten pool and the width of mushy zone will not change. Therefore, the certain range theoretical basis was obtained to design the crystallizer’s three-dimension during EBCHM for the ultra-long and ultra-thin TC4 slab ingot.

    参考文献
    [1] Leyens C, Peters M. Titanium and Titanium Alloys[M]. Darmastadt: Wiley-VCH, 2005:419-427.
    [2]WANG Ding-chun. Development and application of high-strength titanium alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1): 958-963.
    [3] ZHANG Xi-yan, ZHAO Yong-qing, BAI Chen-guang. Titaniumalloy and its application[M]. Beijing: Chemical Industry Press,2005.
    [4] Powell A, Pal U, Avyle J Van Den. Proceedings of the l997 International Symposium on Liquid Metal Processing andCasting[C]. Pittsburgh: VMD/AVS, l997: 78
    [5] Zhang Yingming, Zhou Lian, Sun Jun et al. Calculation of Al Evaporation Loss of TC4 Alloy during Electron Beam Cold Hearth Remelting Process [J]Rare Metal Materials and Engineering, 2008, 37(S3): 99
    [6]LIU Qianli, LI Xiangming, JIANG Yehua. Research Progress of Electron Beam Clod Hearth Melting for Titanium and Titanium Alloys [J] Hot working technology 2016(9):9-14
    [7] KOLEVA E, VUTOVA K, MLADENOV G. The role of ingotcrucible thermal contact in mathematical modelling of the heattransfer during electron beam melting[J], Vacuum, 2001, 62: 189?196.
    [8] VUTOVA K, KOLEVA E, MLADENOV G. Simulation ofthermal transfer process in cast ingot at electron beam meltingand refining[J]. International Review of Mechanical Engineering, 2009, 5(2): 257?265.
    [9] [ Liu Qian-li, Li Xiang-Ming and Jiang Ye-Hua. The effect of bulk nucleation parameters on the macroscopic grain formation of the ultra-long and ultra-thin titanium slab ingot during EBCHM[J]. Materials Science and Technology, 2018 (2):1-8.
    [10] Liu Qian-li, Li Xiang-Ming and Jiang Ye-Hua. Microstructure evolution of ultra-long and ultra-thin titanium slab ingot based on CAFE method during EBCHM[J]. Journal of Materials and Research, 2017, 32(16): 3175-3182.]
    [11] LEI Wen-guang, YU Lan-lan, MAO Xiao-nan, LUO Nan,ZHANG Ying-ming, HOU Zhi-min. Numerical simulation ofTC4 titanium alloy during EBCHM casting solidificationprocess[J]. The Chinese Journal of Nonferrous Metals, 2010,20(S1): s381?s386.
    [12] LEI Wen-guang, YU Lan-lan, MAO Xiao-nan, LUO Nan,ZHANG Ying-ming, HOU Zhi-min. Numerical simulation ofTC4 titanium alloy during EBCHM casting solidificationprocess[J]. The Chinese Journal of Nonferrous Metals, 2010,20(S1): s419?s424
    [13] LIU Qian-li, LI Xiang-ming, JIANG Ye-hua, ZHOU Rong. Effect of process condition on solid liquid interface duringcontinuous solidification process of large scale TC4 titanium alloy
    slab ingot[J]. The Chinese Journal of Nonferrous Metals, 2016,26(8): 1641?1648
    [14] HU Han-qi. Metal solidification principle[M]. Beijing: ChinaMachine Press, 2000: 14?18.
    [15] KURZ W, FISHER D J. Fundamental of solidification[M]. LIJian-guo, HU Qiao-dan, transl. Beijing: Higher Education Press,2010: 142?151.
    [16] DESBIOLLS J L, DROUX J J, RAPPAZ J, RAPPAZ M. Simulation of solidification of alloys by the finite elementmethod[J]. Computer Physics Reports, 1987, 6(1/6): 371?383.6, 1987, 371-383
    引证文献
引用本文

liuqianli.电子束冷床炉熔炼超长超薄TC4铸锭过程中坩埚的尺寸设计[J].稀有金属材料与工程,2020,49(5):1476~1482.[liuqianli. Design of crucible’s size during EBCHM for ultra-long and ultra-thin TC4 ingot[J]. Rare Metal Materials and Engineering,2020,49(5):1476~1482.]
DOI:10.12442/j. issn.1002-185X. E20180034

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-31
  • 最后修改日期:2019-02-21
  • 录用日期:2019-02-22
  • 在线发布日期: 2020-06-05