+高级检索
工艺参数设置和厚度对电子束熔融加工的Ti-6Al-4V的微观结构的影响
作者单位:

马尔默大学材料科学系

基金项目:

Knowledge Foundation Sweden (KKS) under project 0256.


Effect of Process Parameters Settings and Thickness on Microstructures of EBM Produced Ti-6Al-4V
Author:
Affiliation:

Division of Materials Science,School of technology,Malmö University,SE- Malmö,Sweden

Fund Project:

Knowledge Foundation Sweden (KKS) under project 0256.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文研究了试件尺寸和工艺参数(电子束强度,扫描速度,焦点偏移量和扫描长度)对EBM加工的Ti-6Al-4V微观结构的影响。通常,可以观察到EBM加工的Ti-6Al-4V的微观结构是由原始β相的柱状晶粒组成。在柱状晶粒内部观察到典型的(α+β)结构,即魏氏体α片和在细小的α晶粒的界面上形成的杆状β相。还发现沿原始β柱状晶粒的晶界形成α层晶界。随着试件厚度,电子束能量密度和扫描长度的增加,先前的β柱状晶粒的直径增大,并且生长的方向与加工方向一致。同时,柱状晶粒直径也随着高度的增加而减小。随着厚度和电子束能量密度的增加,α片会变得更粗大。

    Abstract:

    In the current study, the effect of sample dimensions and process parameters (beam current, scan speed, offset focus and scan length) of EBM system on microstructure of the EBM built Ti-6Al-4V has been investigated. In general, it can be observed that the microstructures of EBM built Ti-6Al- 4V consist of columnar grains of prior β phase. Inside the columnar grain typical (α+β) structures namely Widmanst?tten α platelets with rod like β phase formed on the interfaces of the fine α grains has been observed. Grain boundary α layer is found to be formed along grain boundary of prior β columnar grain. With increasing thickness of the test slab, beam energy density and scanning length, the diameter of prior β columnar grain increases and they follow the build direction. The columnar grain diameter also decreases with increase in height. With increasing thickness and beam energy density α platelets get coarser.

    参考文献
    1. Al-Bermani, S.S., et al., The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V. Metallurgical and Materials Transactions A, 2010. 41(13): p. 3422-3434.
    2. Cormier, D., O. Harrysson, and H. West, Characterization of H13 steel produced via electron beam melting. Rapid Prototyping Journal, 2004. 10(1): p. 35-41.
    3. Galati, M. and L. Iuliano, A literature review of powder-based electron beam melting focusing on numerical simulations. Additive Manufacturing, 2018. 19: p. 1-20.
    4. Pobel, C.R., et al., Processing windows for Ti-6Al-4V fabricated by selective electron beam melting with improved beam focus and different scan line spacings. Rapid Prototyping Journal, 2018.
    5. Murr, L.E., et al., Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Materials Characterization, 2009. 60(2): p. 96-105.
    6. Gaytan, S.M., et al., Advanced metal powder based manufacturing of complex components by electron beam melting. Materials Technology, 2009. 24(3): p. 180-190.
    7. Parthasarathy, J., et al., Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater, 2010. 3(3): p. 249-59.
    8. Zhang, L.-C., et al., Additive Manufacturing of Titanium Alloys by Electron Beam Melting: A Review. Advanced Engineering Materials, 2018. 20(5).
    9. Zeng, L. and T.R. Bieler, Effects of working, heat treatment, and aging on microstructural evolution and crystallographic texture of α, α′, α″ and β phases in Ti–6Al–4V wire. Materials Science and Engineering: A, 2005. 392(1-2): p. 403-414.
    10. Sokolov, Y.A., et al., Alloy Ti – 6Al – 4V Microstructure and Properties Prepared by Layer-by-Layer Electron-Beam Synthesis. Metal Science and Heat Treatment, 2015. 57(5-6): p. 354-358.
    11. LüTJERING, Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys. Materials Science Engineering A, 1998. 243(1–2): p. 32-45.
    12. Safdar, A., et al., Evaluation of microstructural development in electron beam melted Ti-6Al-4V. Materials Characterization, 2012. 65: p. 8-15.
    13. Thijs, L., et al., A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Materialia, 2010. 58(9): p. 3303-3312.
    14. Appolaire, B., L. Héricher, and E. Aeby-Gautier, Modelling of phase transformation kinetics in Ti alloys – Isothermal treatments. Acta Materialia, 2005. 53(10): p. 3001-3011.
    15. Mur, F.X.G., D. Rodríguez, and J.A. Planell, Influence of tempering temperature and time on the α′-Ti-6A1-4V martensite. 1996. 234(2): p. 287–289.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

贺怀志,Adnan. Safdar, Liu-Ying Wei.工艺参数设置和厚度对电子束熔融加工的Ti-6Al-4V的微观结构的影响[J].稀有金属材料与工程,2021,50(2):408~415.[huaizhi he, Adnan. Safdar, Liu-Ying Wei. Effect of Process Parameters Settings and Thickness on Microstructures of EBM Produced Ti-6Al-4V[J]. Rare Metal Materials and Engineering,2021,50(2):408~415.]
DOI:10.12442/j. issn.1002-185X. E20190115

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-12-17
  • 最后修改日期:2020-03-18
  • 录用日期:2020-03-19
  • 在线发布日期: 2021-03-09