+高级检索
单晶镍基高温合金超高温蠕变期间的变形机制
作者:
作者单位:

1.沈阳工业大学 材料科学与工程学院,辽宁 沈阳 110870;2.贵州工程应用技术学院 机械工程学院,贵州 毕节 551700

作者简介:

通讯作者:

中图分类号:

基金项目:

Science and Technology Foundation Project of Guizhou province (No.qiankehejichu[2020]1Y198, No.qiankehezhicheng[2019]2870), Projects of Liaoning Natural Science Foundation(No.2020-Ms-212), Science and Technology Project of Bijie City(No.bikehezi[2019]2), Characteristic Key Laboratory of University of Guizhou province (No.qianjiaoheKYzi[2019]053)


Deformation Mechanism of Single-Crystal Nickel-based Superalloys During Ultra-High-Temperature Creep
Author:
Affiliation:

1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;2.School of Mechanical Engineering, Guizhou University of Engineering Science, Bijie 551700, China

Fund Project:

Science and Technology Foundation Project of Guizhou Province (qiankehejichu[2020]1Y198, qiankehezhicheng[2019]2870); Projects of Liaoning Natural Science Foundation (2020-Ms-212); Science and Technology Project of Bijie City (bikehezi[2019]2); Characteristic Key Laboratory of University of Guizhou Province (qianjiaoheKYzi[2019]053)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过蠕变性能测试及组织形貌观察,研究了6%Re-5%Ru(质量分数)单晶镍基高温合金的超高温蠕变行为和变形机制。结果表明,该合金在1160 ℃/120 MPa条件下的蠕变寿命为206 h。稳态蠕变期间,位错在基体中滑移和攀移越过筏状γ′相是合金的变形特征,基体中溶解的高浓度难熔元素可增加位错运动阻力。蠕变后期,切入筏状γ′相的位错可由{111}面交滑移至{100}面,形成Kear-Wilsdorf(K-W)位错锁,高数量K-W位错锁可抑制位错滑移和交滑移,是合金具有较好蠕变抗力和较低应变速率的原因。交滑移可扭曲筏状γ′相,并在两相界面发生裂纹萌生与扩展,直至断裂,这是合金蠕变后期的变形与损伤特征。其中,溶入γ′相的Ru原子可替换Al原子,合金中Ru与Re、W的相互作用使较多的Re、W原子溶入γ′相,延缓元素扩散速率,阻碍位错运动,使合金在超高温蠕变期间仍保留高数量K-W位错锁及良好蠕变抗力。

    Abstract:

    The creep behavior and deformation mechanism of the nickel-based single-crystal superalloy containing 6wt% Re and 5wt% Ru at ultra-high temperatures were studied via microstructure observation and creep property analysis. The results show that under the condition of 1160 °C/120 MPa, the Ni-based superalloy has a creep life of 206 h. During the steady state creep period, the deformation mechanism is dominated by dislocation glide in the γ matrix and dislocation climb over the γ′ raft phases. The refractory elements dissolved in the γ matrix can improve the resistance to dislocation movement. In the late creep stage, the cross-slip occurs from {111} plane to the {100} plane with the dislocations used for shearing the γ′ phase, and then the Kear-Wilsdorf (K-W) dislocation locks are formed. A large number of K-W dislocation locks can inhibit the dislocation glide and cross-slip, thus improving the creep resistance and reducing the strain rate for Ni-based superalloys. In the late creep stage, the cross-slip dislocations are initiated to twist the γ′/γ raft phases, and the crack initiation and propagation occur in the γ′/γ interfaces until fracture. These phenomena are the damage and fracture features of the Ni-based superalloys. The Ru atoms dissolved in the γ′ phase can replace the Al atoms. When Ru, Re, and W atoms react in the Ni-based superalloy, more Re and W atoms can be dissolved into the γ′ phase, which reduces the element diffusion rate and hinders the dislocation movement, thereby retaining more K-W dislocation locks and excellent creep resistance of Ni-based superalloys at ultra-high temperatures.

    参考文献
    相似文献
    引证文献
引用本文

赵国旗,田素贵,刘丽荣,田宁,晋芳伟.单晶镍基高温合金超高温蠕变期间的变形机制[J].稀有金属材料与工程,2022,51(1):52~59.[Zhao Guoqi, Tian Sugui, Liu Lirong, Tian Ning, Jin Fangwei. Deformation Mechanism of Single-Crystal Nickel-based Superalloys During Ultra-High-Temperature Creep[J]. Rare Metal Materials and Engineering,2022,51(1):52~59.]
DOI:10.12442/j. issn.1002-185X. E20210008

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-09
  • 最后修改日期:2021-06-20
  • 录用日期:2021-07-09
  • 在线发布日期: 2022-02-04
  • 出版日期: 2022-01-28