+高级检索
1200 MPa级高强高韧损伤容限钛合金强韧性研究进展
作者:
作者单位:

1.西北有色金属研究院,陕西 西安 710016;2.陕西科技大学,陕西 西安 710021

基金项目:

中法国际合作项目(2015DFA51430);国家自然科学基金(52101122,51471136)


Advance in Relationship Between Tensile Strength and Toughness for 1200 MPa High Strength and High Toughness Ti-Alloy with Damage Tolerance
Author:
Affiliation:

1.Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China;2.Shaanxi University of Science and Technology, Xi'an 710021, China

Fund Project:

National International Science and Technology Cooperation Project of China (2015DFA51430); National Natural Science Foundation of China (52101122, 51471136)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    高强高韧损伤容限钛合金是高强钛合金的重要研究方向,本文重点研究、评述了1200 MPa级高强高韧损伤容限钛合金Ti-5321的拉伸强度与冲击韧性、断裂韧性的关系。Ti-5321合金的微观组织明显影响合金的强度和韧性。片层组织具有较好的强度、塑性、断裂韧性、冲击韧性匹配,而双态组织也有较好的强度、塑性、断裂韧性匹配,但冲击韧性低。结合微观组织演变分析了强度、断裂韧性、冲击韧性的变化规律,并提出了高强高韧损伤容限钛合金的研究方向。

    Abstract:

    High strength and high toughness Ti-alloy with damage tolerance is an important research direction of high strength titanium alloy. This work researched and reviewed the relationship among tensile strength, fracture toughness and impact toughness of 1200 MPa high strength and high toughness Ti-5321 alloy with damage tolerance. Microstructure greatly affects the tensile strength, fracture toughness and impact toughness. Lamella microstructure has good matching among tensile strength, plasticity, fracture toughness and impact toughness. Bimodal microstructure also has good matching among tensile strength, plasticity and fracture toughness, while its impact toughness is low. Based on the microstructure evolution, the changing laws of tensile strength, fracture toughness and impact toughness were analyzed. The future research direction for high strength and high toughness Ti-alloy with damage tolerance was proposed.

    参考文献
    [1] Kang Limei, Yang Chao. Advanced Engineering Materials[J], 2019, 21: 180 1359
    [2] James C Williams, Rodney R Boyer. Metals[J], 2020, 10: 705
    [3] Zhao Qinyang, Chen Yongnan, Xu Yiku et al. Materials & Design[J], 2021, 200: 109 457
    [4] Chen Wei, Liu Yunxi, Li Zhiqiang. Journal of Aeronautical Materials[J], 2020, 40: 63
    [5] Qu Henglei, Zhou Lian, Zhou Yigang et al. Rare Metals Le- tter[J], 2004, 23: 5
    [6] Boyer R R. Journal of Metals[J], 1992, 44: 23
    [7] Zhao Qinyang, Sun Qiaoyan, Xin Shewei et al. Materials Science and Engineering A[J], 2022, 845: 143 260
    [8] Huang Xu, Zhu Zishou, Wang Honghong. Advanced Aeronautical Titanium Alloys and Application[M]. Beijing: National Defense Industry Press, 2012 (in Cinese)
    [9] Zhao Yongqing, Ma Chaoli, Chang Hui et al. Materials China[J], 2016, 35(12): 914 (in Chinese)
    [10] Ren Lei, Xiao Wenlong, Chang Hu et al. Materials Science and Engineering A[J], 2018, 711: 553
    [11] Song Bo, Xiao Wenlong, Ma Chaoli et al. Materials Characterization[J], 2019, 148: 224
    [12] Song Bo, Chen Yu, Xiao Wenlong et al. Materials Science and Engineering A[J], 2020, 793: 139 886
    [13] Song Bo, Xiao Wenlong, Fu Yu et al. Materials Letters[J], 2020, 275: 128 147
    [14] Song Bo, Xiao Wenlong, Wang Junshuai et al. Journal of Alloys and Compounds[J], 2021, 879: 160 495
    [15] Gu B, Chekhonin P, Schaarschuch R et al. Journal of Alloys and Compounds[J], 2020, 825: 154 082
    [16] Gu Bin, Chekhonin P, Xin Shewei et al. Materials Characterization[J], 2021, 179: 111 297
    [17] Gu Bin, Chekhonin P, Xin Shewei et al. Journal of Alloys and Compounds[J], 2021, 876: 159 938
    [18] Wu Cong, Zhao Yongqing, Huang Shixing et al. Journal of Alloys and Compounds[J], 2020, 841: 155 728
    [19] Wu Cong, Zhao Yongqing, Huang Shixing et al. Material Characterization[J], 2021, 175: 111 103
    [20] Wu Cong, Zhao Yongqing, Sun Qiaoyan et al. MATEC Web of Conferences[J], 2020, 321: 12 005
    [21] Wu Cong, Zhao Qinyang, Zhao Yongqing et al. Journal of Materials Science & Technology[J], 2022, 103: 29
    [22] Wu Cong, Zhao Qinyang, Huang Shixing et al. Journal of Materials Science & Technology[J], 2022, 112: 36
    [23] Wang Huan, Zhao Qinyang, Xin Shewei et al. International Journal of Fatigue[J], 2021, 151: 106 348
    [24] Wang Huan, Zhao Qinyang, Xin Shewei et al. Materials Science and Engineering A[J], 2021, 821: 141 626
    [25] Wang Huan, Xin Shewei, Zhao Yongqing et al. Materials Science and Engineering A[J], 2020, 797: 140 080
    [26] Wang Huan, Zhao Yongqing, Zhao Qinyang et al. Materials Characterization[J], 2021, 174: 11 075
    [27] Qin Dongyang, Lu Yafeng, Guo Dizi et al. Materials Science and Engineering A[J], 2013, 587: 100
    [28] Huang Chaowen, Zhao Yongqing, Xin Shewei et al. Journal of Alloys and Compounds[J], 2017, 693: 582
    [29] Sauer C, Lütjering G. Materials Science and Engineering A[J], 2001, 319: 393
    [30] Luster J, Morris M A. Metallurgical and Materials Transactions A[J], 1995, 26(7): 1745
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵永庆,吴聪,王欢.1200 MPa级高强高韧损伤容限钛合金强韧性研究进展[J].稀有金属材料与工程,2022,51(12):4389~4397.[Zhao Yongqing, Wu Cong, Wang Huan. Advance in Relationship Between Tensile Strength and Toughness for 1200 MPa High Strength and High Toughness Ti-Alloy with Damage Tolerance[J]. Rare Metal Materials and Engineering,2022,51(12):4389~4397.]
DOI:10.12442/j. issn.1002-185X. E20220033

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-26
  • 最后修改日期:2022-10-26
  • 录用日期:2022-10-27
  • 在线发布日期: 2023-01-11
  • 出版日期: 2022-12-30