+高级检索
固相反应法研究BaTiO3粉末的相变和微观结构的转变
作者:
作者单位:

深圳市第三代半导体重点实验室


Investigation of the Phase and Microstructural Transformation on BaTiO3 Powder by Solid-State Reaction
Author:
Affiliation:

1.Shenzhen Key Laboratory of the Third Generation Semi-conductor,the Department of Electrical and Electronic Engineering,Southern University of Science and Technology;2.Academy for Advanced Interdisciplinary Studies,Southern University of Science and Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以国产亚微米级BaCO3和TiO2为原料,采用砂磨固相法合成尺寸小、四方性高的BaTiO3粉体,同时研究煅烧温度、升温速率及保温时间对BaTiO3平均粒径和四方性的影响。结果表明,通过固相反应合成BaTiO3的反应机理可分为两个阶段:当煅烧温度低于900 oC,BaCO3和TiO2首先形成立方相的BaTiO3,当煅烧温度升至900 oC,立方相BaTiO3开始向四方相转变。在煅烧温度为900 oC,升温速率为5 oC/分钟,保温5 h,制备出粒径为180.7 nm,四方性为1.0086的超细BaTiO3粉体。该工作为制备超薄层MLCC用高性能BaTiO3粉体提供了较好的研究思路。

    Abstract:

    As the miniaturization of multilayer ceramic capacitors (MLCCs) is a major trend, well-fabricated ferroelectric materials such as barium titanate (BaTiO3, BTO) with small grain and well crystallinity are increasingly in demand. Compared with other synthetic routes, solid-state reaction (SSR) is a more feasible route to prepare BaTiO3 nanoparticles without lattice imperfections. In contrast to other researches about SSR that mainly focus on exploring improved processes to obtain BaTiO3 nanoparticles with high tetragonality, investigations on the phase, microstructural transformation and reaction mechanism of BaTiO3 nanoparticles were made in this study. Experiments results reveal that the reaction mechanism of forming tetragonal BaTiO3 via SSR can be ascribed to two main reaction stages, including the formation of cubic BaTiO3 and the cubic-tetragonal transformation of BaTiO3. Finally, BaTiO3 powders with a tetragonality of 1.0086 (c/a) and average particle size of 180 nm was acquired after optimizing the calcination parameters.

    参考文献
    1T.G. Reynolds. Application space influences electronic ceramic materials [J], Am Ceram Soc Bull, 2001, 80(10): 29-33.
    2L.B. Kong, T.S. Zhang, and J. Ma, et al. Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique [J], Prog Mater Sci, 2008, 53(2): 207-322.
    3X. He, J. Ouyang, and J. Jin, et al. Rapid synthesis of barium titanate microcubes using composite-hydroxides-mediated avenue [J], Mater Res Bull, 2014, 52: 108-11.
    4C.A. Randall. Scientific and engineering issues of the state-of-the-art and future multilayer capacitors [J], Ceram Soc Jpn, 2001, 109(1): S2-S6.
    5H. Kishi, Y. Mizuno, and H. Chazono. Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives [J], Jpn Appl Phys Part 1, 2003, 42(1): 1-15.
    6S. Ohara, A. Kondo, and H. Shimoda, et al. Rapid mechanochemical synthesis of fine barium titanate nanoparticles [J], Mater Lett, 2008, 62(17-18): 2957-59.
    7M.M. Krzmanc, D. Klement, and B. Jancar, et al. Hydrothermal conditions for the formation of tetragonal BaTiO3 particles from potassium titanate and barium salt [J], Ceram Int, 2015, 41(10): 15128-37.
    8J.B. Gao, H.Y. Shi, and H.N. Dong, et al. Factors influencing formation of highly dispersed BaTiO3 nanospheres with uniform sizes in static hydrothermal synthesis [J], Nanopart Res, 2015, 17(7): 286.
    9D. Vriami, E. Beaugnon, and P. Cool, et al. Hydrothermally synthesized BaTiO3 textured in a strong magnetic field [J], Ceram Int, 2015, 41(4): 5397-402.
    10P.P. Khirade, S.D. Birajdar, and A.V. Raut, et al. Multiferroic iron doped BaTiO3 nanoceramics synthesized by sol-gel auto combustion: Influence of iron on physical properties [J], Ceram Int, 2016, 42(10): 12441-51.
    11S.M. Chandrasekhar and P. Kumar. Microwave sintered sol-gel derived BaTiO3 and Ba0.95La0.05TiO3 ceramic samples for capacitor applications [J], Ceram Int, 2016, 42(9): 10587-92.
    12W.S. Jung, J. Park, and Y. Park, et al. Effects of impurities on the properties of BaTiO3 synthesized from barium titanyl oxalate [J], Ceram Int, 2010, 36(6): 1997-2002.
    13V.A. Zazhigalov, V.V. Sidorchuk, and S.V. Khalameida, et al. Mechanochemical synthesis of BaTiO3 from barium titanyl oxalate [J], Inorg Mater, 2008, 44(6): 641-45.
    14L.B. Kong, J. Ma, and H. Huang, et al. Barium Titanate Derived from Mechanochemically Activated Powders [J], Alloy Comp, 2002, 337; 226.
    15R. Yanagawa, M. Senna, and C. Ando, et al. Preparation of 200 nm BaTiO3 particles with their tetragonality 1.010 via a solid-state reaction preceded by agglomeration-free mechanical activation [J], J Am Ceram Soc, 2007, 90(3): 809-14.
    16 C. Ando and H. Kishi. Effects of Bovine Serum Albumin on the Low Temperature Synthesis of Barium Titanate Microparticles via a Solid State Route [J], J Am Ceram Soc, 2006, 89(5): 1709–1712.
    17C. Ando, H. Kishi, and H. Oguchi, et al. Effects of bovine serum albumin on the low temperature synthesis of barium titanate microparticles via a solid state route [J], J Am Ceram Soc, 2006, 89(5): 1709-12.
    18 S.W. Kwon, and D.H. Yoon. Tetragonality of nano-sized barium titanate powder prepared with growth inhibitors upon heat treatment [J]. J Eur Ceram Soc, 2008, 27(1): 247–252.
    19S.W. Han, J.W. Shin and D.H. Yoon, Synthesis of pure nano-sized Li4Ti5O12 powder via solid-state reaction using very fine grinding media [J]. Ceramics International, 2012, 38(8):6963-6968.
    20M.T. Buscaglia, M. Bassoli, and V. Buscaglia. Solid-state synthesis of ultrafine BaTiO3 powders from nanocrystalline BaCO3 and TiO2 [J], Am Ceram Soc, 2005, 88(9): 2374-79.
    21M.T. Buscaglia, M. Bassoli, and V. Buscaglia. Solid-state synthesis of nanocrystalline BaTiO3: Reaction kinetics and powder properties [J], Am Ceram Soc, 2008, 91(9): 2862-69.
    22S.S. Ryu and D.H. Yoon. Solid-state synthesis of nano-sized BaTiO3 powder with high tetragonality [J], Mater Sci, 2007, 42(17): 7093-99.
    23A. Lotnyk, S. Senz, and D. Hesse. Thin-film solid-state reactions of solid BaCO3 and BaO vapor with (100) rutile substrates [J], Acta Mater, 2007, 55(8): 2671-81.
    24A. Lotnyk, S. Senz, D. Hesse. Formation of BaTiO3 thin films from (110) TiO2 rutile single crystals and BaCO3 by solid state reactions [J], Solid State Ionics, 2006, 177(5-6): 429-36.
    25H. Hsiang, Y.L. Chang, and J.S. Fang, et al. Polyethyleneimine surfactant effect on the formation of nano-sized BaTiO3 powder via a solid state reaction [J], J Alloy Comp, 2011, 509(28): 7632–7638.
    26C. Huang, X. Wang , and X. Liu, et al. Extensive analysis of the formation mechanism of BaSnO3 by solid-state reaction between BaCO3 and SnO2 [J], J Eur Ceram Soc, 2016, 36(3): 583–592.
    27 H.W. Lee, S. Moon, and C.H. Choi, et al. Synthesis and Size Control of Tetragonal Barium Titanate Nanopowders by Facile Solvothermal Method [J], Am Ceram Soc, 2012, 95(8): 2429-34.
    28L. Saini, Y. Janu, and M.K. Patra, et al. Dual Band Resonance in Tetragonal BaTiO3/NBR Composites for Microwave Absorption Applications [J], Am Ceram Soc, 2016, 99(9): 3002-7.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡乔宇,黄皓,温佳鑫,张蕾,于洪宇.固相反应法研究BaTiO3粉末的相变和微观结构的转变[J].稀有金属材料与工程,2020,49(2):476~481.[HU Qiaoyu, HUANG Hao, WEN Jiaxin, ZHANG Lei, YU Hongyu. Investigation of the Phase and Microstructural Transformation on BaTiO3 Powder by Solid-State Reaction[J]. Rare Metal Materials and Engineering,2020,49(2):476~481.]
DOI:10.12442/j. issn.1002-185X. QH20190055

复制
文章指标
  • 点击次数:1036
  • 下载次数: 1404
  • HTML阅读次数: 154
  • 引用次数: 0
历史
  • 收稿日期:2019-04-09
  • 最后修改日期:2019-05-26
  • 录用日期:2019-10-23
  • 在线发布日期: 2020-03-12