2018, 47(9):2728-2734.
摘要:本文采用密度泛函理论方法,研究氧缺陷型金红石相TiO2-x(x=0~0.5)光催化剂晶体结构、能带结构以及光电行为。计算结果表明,金红石型TiO2引入氧缺陷后,在带隙中间形成不同程度的缺陷能级,由Ti 3d和O 2p组成,大大降低了电子从价带跃迁到导带所需要的能量,使TiO2-x的吸收边红移,增强了可见光响应,有利于提高可见光催化活性。随着氧缺陷浓度θ由1.39%升高到25%,TiO2-x的带隙先减小后增大,当θ=6.25%时,禁带宽带减小至1.46 eV。综合紫外-可见吸收光谱结果,6.25%为最佳氧缺陷浓度,电子在晶体中迁移率大,对可见光的吸收强度大,有利于提高TiO2的光催化性能。
2019, 48(7):2225-2231.DOI: 10.12442/j.issn.1002-185X.20180133
摘要:本文基于第一性原理方法,研究Bi2O22+和CO32-交替层中氧缺陷生成对晶体结构、能带结构以及光学性质的影响,揭示氧缺陷提高Bi2O2CO3可见光催化活性作用机制。计算结果发现,氧缺陷的存在对Bi2O2CO3的晶胞参数和Bi-O键影响较小,但作为电子施主中心可以向周围原子提供电子,造成Bi2O2CO3电荷分布发生变化,有效减小能带间隙,促进Bi2O2CO3对可见光的吸收,且这种现象随着氧缺陷浓度的升高更加明显。值得注意的是,Bi2O22+层和CO32-层氧缺陷的作用不同。CO32-层中氧缺陷的形成导致费米能级附近出现缺陷能级,改变了电子的跃迁方式。相较于CO32-层,氧缺陷更容易存在于Bi2O22+层中,能够更佳有效地减小Bi2O2CO3的能带间隙,进一步促进Bi2O2CO3对可见光的吸收。随着Bi2O22+和CO32-层氧缺陷浓度增加,Bi2O22+层氧缺陷的作用愈明显,当浓度达到6.25%时,Bi2O2CO3在可见光区的响应显著增强,有利于提高Bi2O2CO3可见光催化活性。本文计算结果解释了实验上氧缺陷增强Bi2O2CO3光催化活性现象,并为今后合成其它含氧缺陷Bi基金属氧化物提供理论指导。
2024, 53(8):2250-2258.DOI: 10.12442/j.issn.1002-185X.20230395
摘要:目前开发双功能电催化剂是解决金属-空气电池和燃料电池氧电极电化学过程缓慢及能量转化效率低等问题的重要手段之一,其中负载过渡金属单原子的氮掺杂石墨烯材料(M-N-C)被认为是最有希望替代贵金属的催化材料。研究表明M-N-C催化剂的高活性归因于其中过渡金属-氮氧配合物(MNxO4-x)的存在,为了探究MNxO4-x配位结构对材料催化性能的影响,本文基于第一性原理,通过在Fe-N-C材料中引入氧构建不同的FeNxO4-x(x = 0, 1, 2, 3, 4)配合物,研究金属原子的配位数x对氧还原反应(ORR)和氧析出反应(OER)催化性能的影响。结果表明,具有FeN4配位结构的Fe-N-C材料热力学稳定性及ORR/OER催化性能最佳。此外,本文通过变换过渡金属的种类,即锰、铁、钴、镍、铜(M=Mn、Fe、Co、Ni、Cu),研究过渡金属的种类M对MN4催化活性的影响。研究发现,具有CoN4配位结构的M-N-C材料热力学稳定,且相较于其他MN4其ORR和OER催化性能最佳。本论文的研究结果可为调节过渡金属单原子的配位环境,设计高效双功能电催化剂提供理论参考。