Abstract:The nickel-based alloys with different Nb contents were deposited on AISI 1045 carbon steel by laser cladding. The effect of Nb on the microstructures of the nickel-based alloy coatings was investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The result show that the microstructures of the Nb-modified nickel-based alloy coatings are mainly composed of γ-Ni dendrites, interdendritic eutectics, CrB type chromium borides, and dispersed NbC particles. It is found that the addition of Nb will lead to the precipitation of the NbC particles and M23C6 type carbides instead of the M7C3, and M23C6 type carbides can be observed in the Nb-free nickel-based alloy coating. The microhardness and wear resistance of the coatings increase with the increase of Nb contents. The improvement of the wear resistance of the Nb-modified nickel-based alloy coatings is attributed to the microstructural change and phase variation.