Abstract:A novel preparation process has been developed to fabricate TiAl intermetallic compound porous materials based on the combination effect of making pores arising from the chemical reaction and physical space occupation. The technique is mainly consisted of four stages describled as mixing, compacting, dissolution and sintering. The typical double pore structures of the TiAl porous materials were successfully achieved, where the micron pore is associated with the Kirkendall effect and the millimeter pore comes from the space holders. The TiAl porous materials exhibit a thorough open-cellular structure and a perfect homogeneous distribution. Moreover, the porosity, pore size, pore shape, pore structure can be tailored as designed, and the maximum of porosity even reaches 90%. The results of quasi-state compression tests indicate that the TiAl porous materials are typical brittle porous materials with corresponding brittle fracture failure mechanism. The relationship between yield strength and relative density can be understood in terms of the cube cell modle.