+Advanced Search
Microstructure and mechanical properties of porous titanium based on controlling Young’s modulus
Author:
Affiliation:

State Key Laboratory of Solidification Processing,Northwest Polytechnical University,Xi’an,State Key Laboratory of Solidification Processing,Northwest Polytechnical University,Xi’an,State Key Laboratory of Solidification Processing,Northwest Polytechnical University,Xi’an,State Key Laboratory of Solidification Processing,Northwest Polytechnical University,Xi’an,State Key Laboratory of Solidification Processing,Northwest Polytechnical University,Xi’an,State Key Laboratory of Solidification Processing,Northwest Polytechnical University,Xi’an

  • Article
  • | |
  • Metrics
  • |
  • Reference [28]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The Young’s modulus of implant plays an important role in reducing stress shielding. A new method called titanium mesh the stacked-forced-sintering (TMSS) was applied to porous titanium, which easily control Young’s modulus and balance the mechanical properties by different porosities, pore sizes and pore distribution. The results show that porous titanium has different structures in different directions. It has regular macro-pores in the cross section and irregular micro-pores in the longitudinal section. The stress-strain curve of porous titanium shows smooth and stable increase at plastic deformation along the axis direction. The young’s modulus obviously decreases, when increasing the porosity, decreasing nominal pore size, and changing pore distribution from regular to staggered at the same porosity. So the Young’s modulus of porous titanium can be adjusted by these architecture factors to match the different bone tissues, and the appropriate pore sizes have the potential to induce bone tissue ingrowth. The match of mechanical properties and appropriate structures can effectively promote the fixation between the implant and the bone tissue in a long term.

    Reference
    1Long M, Rack H J. Biomaterials[J], 1998, 19(18):1621
    2St-Pierre J P, Gauthier M, Lefebvre L P et al. Biomaterials[J], 2005, 26 (35): 7319
    3Takemoto M, Fujibayashi S, Neo M. Biomaterials[J],S2005, 26(30):6014
    4Gepreel M A, Niinomi M. Journal of the Mechanical Behavior of Biomedical Materials [J], 2013, 20:407
    5Hao Y L, Li S J, Sun B B et al. Phys Rev Lett [J],S2007, 98(21): 216405-1
    6Cui J P, Hao Y L, Li S J et al. Phys Rev Lett [J], 2009, 102(4):045503-1
    7Geetha M, Singh A K, Asokamani R et al. Prog Mater Sci[J], 2009, 54:397
    8Hollister S J. Nature Mater [J], 2005,4(7):518
    9Oh I H, Nomura N, Masahashi N et al. Scripta Mater [J], 2003, 49(8):1197
    10Zou C M, Zhang E L, Li M et al. J Mater Sci: Mater Med Mechanical [J],S2007, 19(1):401
    11HE Guo, LIU Ping, TAN Qingbiao et al. Journal of the Behavior of Biomedical Materials [J], 2012, 5(1):16
    12Pham D T, Gault R S. International Journal of Machine Tools and Manufacture[J], 1998, 38(3):1257
    13Biswas N, Ding J L, Balla V K et al. Mater Sci Eng A[J], 2012, 549(1):213
    14Li S J, Murr L E, Cheng X Y et al. Acta Mater[J], 2012, 60(3):793
    15Sallica-leva E, Jardini A L, Fogagnolo J B. Journal of the Mechanical Behavior of Biomedical Materials[J], 2013, 26:98
    16Gibson L J. Journal of Biomechanics[J], 2005, 38(3): 377
    17Wolfarth D, Filliaggi M, Ducheyne P et al. Journal of Biomedical Materials Research[J], 1990, 23(7):735
    18Kitaoka K, Yamamoto H, Tani T et al. Journal of Orthopacdic Science[J],S1997, 2(2): 106
    19Liu P, Tan Q B, Wu L H et al. Mater Sci Eng A[J],S2009, 527(15):3301
    20Paquay Y C, Ruijter J E, Waerden J P et al. Biomaterials[J], 1997, 18(1):161
    21Xu G S, Kou H C, Li R L. J Adv Mater Res[J], 2013,647: 98
    22Gibson L J, Ashiby M F. Cambridge University Press [P], 1997, 96
    23Teixeira L N, Crippa G E, Lefebvre L P et al. Int J oral maxillofa surg[J], 2012, 41(9):1097
    24Ducheyne P, Martens M. Clin Matls [J], 1988, 1(1):91
    25Parthasarathy J, Starly B, Raman S et al. Journal of the Mechanical Behavior of Biomedical Materials [J], 2010, 3(3):249
    26Shen H, Brinson L C. Mechanics of Materials[J], 2011, 43(8): 420
    27Sobral J M, Caridade S G, Sousa R A. Acta Biomater[J], 2011, 7(3):1009
    28Xu G S,Kou H C, Liu X H et al. Rare Metal Materials and Engineering[J], 2014, 43(11):2778
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[XU Guangsheng, KOU Hongchao, LIU Xianghong, LI Fuping, LI Jinshan, ZHOU Lian. Microstructure and mechanical properties of porous titanium based on controlling Young’s modulus[J]. Rare Metal Materials and Engineering,2017,46(8):2041~2048.]
DOI:[doi]

Copy
Article Metrics
  • Abstract:1684
  • PDF: 1302
  • HTML: 172
  • Cited by: 0
History
  • Received:June 23,2015
  • Revised:September 06,2015
  • Adopted:September 25,2015
  • Online: November 16,2017