Abstract:Pd-based metallic glasses have potential applications in hydrogen-related industry. In the present study, we synthesized Pd71.5Cu12Si16.5 metallic glass as wide ribbons by arc melting and copper roller spinning. Their structures were determined by X-ray diffraction spectra using the conventional X-ray diffractometer and also short wavelength X-ray stress analyzer. Fully glassy state of the ribbons is confirmed. Multiple hydrogen absorption and desorption cycles at room temperature under 100kPa were carried out on the samples. No destruction after more than 10 cycles is observed, which demonstrates good hydrogen embrittlement resistance. The hydrogen permeation properties of the Pd71.5Cu12Si16.5 metallic glass and its crystallized counterpart were further tested using direct permeation method. In the supercooled liquid region, the hydrogen permeation rate is obviously higher for the metallic glass form, which could be explained by the increasing free volumes introduced during isothermal stage in this range.