+Advanced Search
Flow Behavior and Constitutive Models of γ-TiAl Alloys Deformed at Elevated Temperature
Author:
Affiliation:

School of Material Science and Engineering,Northwestern Polytechnical University,Xi’an

Fund Project:

National Natural Science Foundation of China (No. 51505386); Fundamental Research Funds for the Central Universities (No. 3102017gx06003)

  • Article
  • | |
  • Metrics
  • |
  • Reference [70]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    γ-TiAl alloys with low density and high stiffness are preferred structural materials for weight saving of aircraft engines. The present paper deeply reviews flow behavior and constitutive equations of γ-TiAl alloys compressed at elevated temperature. Deformation processing parameters, deformation history and adjusted preheating treatment, chemical compositions and initial microstructures are main factors that determine flow behavior of γ-TiAl alloys compressed at elevated temperature. The constitutive models describing flow stress-strain curves are segmented into genres, such as empirical models, model coupled with different softening mechanisms and models about deformation mechanisms. Arrhenius model and H-S model are deeply discussed. Also, constitutive model including softening mechanism and models involving deformation mechanisms are summarized and analyzed. It predicts that emphasis on further research in γ-TiAl alloys is to establish constitutive models involving multiphase coordinating deformation mechanisms.

    Reference
    1 Appel F, Clemens H, Fischer F D, Progress in Materials Science [J], 2016, 81:55
    2 Appel F, Wagner R, Materials Science and Engineering R-Reports[J], 1998, 22(5):187
    3 Bewlay B P, Nag S, Suzuki A, et al., High Temperature Technology[J], 2016, 33(4-5):549
    4 Bewlay B P, Weimer M, Kelly T, et al., Mrs Proceedings[J], 2013, 1516:49
    5 Guyon J, Hazotte A, Wagner F, et al., Acta Materialia[J], 2016, 103:672
    6 Song Xiaojie, Cui Hongzhi, Hou Nan, et al., Ceramics International[J], 2016, 42(12):13586
    7 Yamaguchi M, Inui H, Ito K, Acta Materialia[J], 2000, 48(1):307
    8 Clemens H, Mayer S, Advanced Engineering Materials[J], 2013, 15(4):191
    9 Clemens H, Mayer S, Materials at High Temperatures[J], 2016, 33(4-5):560
    10 Mayer S, Erdely P, Fischer F D, et al., Advanced Engineering Materials[J], 2017, 19(4):1600735
    11 Kartavykh A V, Asnis E A, Piskun N V, et al., Materials Letters[J], 2016, 162:180
    12 Janschek P, Materials Today Proceedings[J], 2015, 2:S92
    13 Cheng Liang, Xue Xiangyi, Tang Bin, et al., Intermetallics[J], 2014, 49:23
    14 Seetharaman V, Semiatin S L, Metallurgical and Materials Transactions A[J], 1996, 27(7):1987
    15 Goetz R L, Semiatin S L, Journal of Materials Engineering and Performance[J], 2001, 10(6):710
    16 Wen Daoshen, Zong Yingying, Wang Yaoqi, et al., Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing[J], 2016, 656:151
    17 Xin Jingjing, Zhang Laiqi, Ge Gengwu, et al., Materials and Design[J], 2016, 107:406
    18 Wan Zhipeng, Sun Yu, Hu Lianxi, et al., Materials Characterization[J], 2017, 130:25
    19 Sokolovsky V S, Stepanov N D, Zherebtsov S V, et al., Intermetallics[J], 2018, 94:138
    20 Xu Wenchen, Shan Debin, Zhang Hao, Acta Metallurgica Sinca[J], 2013, 49(11):1339 (in Chinese)
    21 Cheng Liang, Chang Hui, Tang Bin, et al., Journal of Alloys and Compounds[J], 2013, 552:363
    22 Zhang W J., Lorenz U, Appel F, Acta Materialia[J], 2000, 48(11):2803
    23 Huber D, Werner R, Clemens H, et al., Materials Characterization[J], 2015, 109:116
    24 Appel F, Herrmann D, Fischer F D, et al., International Journal of Plasticity[J], 2013, 42:83
    25 Paul J D H, Appel F, Metallurgical and Materials Transactions A[J], 2003, 34(10):2103
    26 Sun Wei. The Investigation of Hot Deformation Behavior, Microstructure Evolution and Packed Rolling Process of γ-TiAl Alloys. Institute of Metal Research Chinese Academy of Sciences, 2009
    27 Huang Z H, Intermetallics[J], 2005, 13(3-4):245
    28 Appel F, Paul J D H, Oehring M, Gamma titanium aluminide alloys: science and technology, John Wiley and Sons, 2011.
    29 Clemens H, Wallgram W, Kremmer S, et al., Advanced Engineering Materials[J], 2008, 10(8):707
    30 Qiu Congzhang, Liu Yong, Huang Lan, et al., Transactions of Nonferrous Metals Society of China[J], 2012, 22(11):2593
    31 Imayev R M, Imayev V M, Oehring M, et al., Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science[J], 2005, 36A(3A):859
    32 Paul J D H, Appel F, Wagner R, Acta Materialia[J], 1998, 46(4):1075
    33 Zhu Hanliang, Seo D Y, Maruyama K, Jom[J], 2010, 62(1):64
    34 Cui Ning, Wang Xiaopeng, Kong Fantao, et al., Rare Metals[J], 2016, 35(1):42
    35 Appel F, Oehring M, Wagner R, Intermetallics[J], 2000, 8(9-11):1283
    36 Huang Baiyun. Intermetallics of titanium aluminides [M]. Central South University of Technology Press, 1998 (in Chinese)
    37 Nazarova T I, Imayev V M, Imayev R M, et al., Intermetallics[J], 2017, 82:26
    38 Chen Ruirun, Ma Tengfei, Guo Jingjie, et al., Materials and Design[J], 2016, 108:259
    39 Wang D J, Zhang R, Yuan H, et al., Jom[J], 2017, 69(10):1824
    40 Seetharaman V, Semiatin S L, Metallurgical and Materials Transactions A[J], 2002, 33(12):3817
    41 Erdely P, Staron P, Maawad E, et al., Acta Materialia[J], 2017, 126:145
    42 Stark A, Bartels A, Gerling R, et al., Advanced Engineering Materials[J], 2010, 8(11):1101
    43 Bartels A, Schillinger W, Intermetallics[J], 2001, 9(10):883
    44 Schwaighofer E, Clemens H, Lindemann J, et al., Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing[J], 2014, 614:297
    45 Godor F, Werner R, Lindemann J, et al., Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing[J], 2015, 648:208
    46 Zhang Ji, Zhang Zhihong, Su Xi, et al., Intermetallics[J], 2000, 8(4):321
    47 Zhang Wei, Liu Yong, Li Huizhong, et al., Journal of Materials Processing Technology[J], 2009, 209(12-13):5363
    48 Liu Hongwu, Rong Rong, Gao Fan, et al., Metals[J], 2016, 6(305):1
    49 Sun Yu, Hu Lianxi, Ren Junshuai, Journal of Materials Engineering and Performance[J], 2015, 24(3):1313
    50 Li Huizhong, Li Zhou, Liu Yong, et al., Transactions of Nonferrous Metals Society of China[J], 2010, 20(1):79
    51 Li Mingao, Xiao Shulong, Xu Lijuan, et al., Materials Characterization[J], 2018, 136:69
    52 Shi Chengcheng, Jiang Shaosong, Zhang Kaifeng, Materials[J], 2017, 10(12):1437
    53 Ge Gengwu, Zhang Laiqi, Xin Jingjing, et al., Scientific Reports[J], 2018, 8:5453
    54 Zhang Hao. Research on high temperature deformation behavior of TiAl alloys with lamellar microstructure [D]. Harbin Institute of Technology (in Chinese)
    55 Sellars C M, McTegart W J, Acta Metallurgica[J], 1966, 14(9):1136
    56 Liang Xiaopeng, Liu Yong, Li Huizhong, et al., Materials and Design[J], 2012, 37:40
    57 He Xiaoming, Yu Zhongqi, Liu Guiming, et al., Materials and Design[J], 2009, 30(1):166
    58 Hensel A, Spittel T, VEB Deutscher Verlag, Leipzig, 1978.
    59 Laasraoui A, Jonas J J, Metallurgical Transactions a-Physical Metallurgy and Materials Science[J], 1991, 22(7):1545
    60 Zanxiang. Dynamic mechanical behavior and deformation mechanism of TiAl intermetallics [D]. University of Science and Technology of China, 2008 (in Chinese)
    61 Appel F, Wagner R, Materials Science and Engineering R Reports[J], 1998, 22(5):187
    62 Leyens, Peters M (Eds), Titanium and Titanium Alloys, John Wiley and Sons, 2003
    63 Zhang Hongjian, Wen Weidong, Cui Haitao, Materials for Mechanical Engineering [J], 2013, 37(7):1 (in Chinese)
    64 Kim H Y, Maruyama K, Acta Materialia[J], 2003, 51(8):2191
    65 Kanani M, Hartmaier A, Janisch R., Acta Materialia[J], 2016, 106:208
    66 Qiu Congzhang, Liu Yong, Huang Lan, et al., Transactions of Nonferrous Metals Society of China[J], 2012, 22(11):2593
    67 Kim J H, Shin D H, Semiatin S. L., et al., Materials Science and Engineering A[J], 2003, 344(1–2):146
    68 Cerreta E, Mahajan S, Acta Materialia[J], 2001, 49(18):3803
    69 Marketz W T, Fischer F D, Clemens H., International Journal of Plasticity[J], 2003, 19(3):281
    70 Nakano T, Nakai Y, Umakoshi Y, Science and Technology of Advanced Materials[J], 2002, 3(2):225
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Runrun Xu, Miqoquan Li, Hong Li. Flow Behavior and Constitutive Models of γ-TiAl Alloys Deformed at Elevated Temperature[J]. Rare Metal Materials and Engineering,2019,48(5):1406~1414.]
DOI:10.12442/j. issn.1002-185X.20180411

Copy
Article Metrics
  • Abstract:1360
  • PDF: 1613
  • HTML: 156
  • Cited by: 0
History
  • Received:April 23,2018
  • Revised:August 27,2018
  • Adopted:August 30,2018
  • Online: June 04,2019