+Advanced Search
  • Article
  • | |
  • Metrics
  • |
  • Reference [33]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The solubility curves of Er in Al-Er alloys were investigated by means of first principles calculations based on the density functional theory. The solution energies of Er atoms in these Al-Er alloys were calculated by using the “Frozen core” approximation and “Standard potential” approximation for the 4f electrons, respectively. The calculated results showed that the solution energies of hR20, cP4 and hP8-Al3Er were -1.003 and -0.767 eV/Er atom, -0.989 and -0.787 eV/Er atom, -0.967 and -0.713 eV/Er atom, respectively, obtained from the two approximations. The lattice dynamics calculation showed that the excess enthalpies of hR20, cP4 and hP8-Al3Er were 3.301, 3.226 and 3.309 kB/Er atom. The simulated solubility curves were obtained by combining the lattice dynamics values and the weighted average of the solution energy values. The calculated solubility curves of cP4-Al3Er were consistent with the experimental values, which indicates that the 4f electrons play a very important role. In addition, the solubility curve of cP4-Al3Er was very close to that of the hR20-Al3Er, but lower than that of hP8-Al3Er at the same temperature. The chemical driving forces corresponding to the solubility curves of hR20 and cP4-Al3Er were also close to each other, but larger than that of the hP8-Al3Er. Due to the smaller interfacial energy in Al matrix of cP4-Al3Er than that of hR20-Al3Er, it could be deduced that the cP4-Al3Er precipitation was the first in priority order, which was consistent with the experimental observations.

    Reference
    [1] K.E. Knipling, D.C. Dunand, D.N. Seidman. Zeitschrift Fur Metallkunde[J],2006, 97: 246-265.
    [2] A. De Luca, D.C. Dunand, D.N. Seidman. Acta Materialia[J],2018, 144: 80-91.
    [3] D.N. Seidman, E.A. Marquis, D.C. Dunand. Acta Materialia[J],2002, 50: 4021-4035.
    [4] A. De Luca, D.C. Dunand, D.N. Seidman. Acta Materialia[J],2016, 119: 35-42.
    [5] H. Wu, S.P. Wen, X.L. Wu, K.Y. Gao, H. Huang, W. Wang, Z.R. Nie. Materials Science and Engineering: A[J],2015, 639: 307-313.
    [6] S. Wen, K. Gao, Y. Li, H. Huang, Z. Nie. Scripta materialia[J],2011, 65: 592-595.
    [7] Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, D. Zhou. Journal of Alloys and Compounds[J],2014, 610: 27-34.
    [8] R.A. Karnesky, D.C. Dunand, D.N. Seidman. Acta Materialia[J],2009, 57: 4022-4031.
    [9] H. Wu, S.-p. Wen, J.-t. Lu, Z.-p. Mi, X.-l. Zeng, H. Huang, Z.-r. Nie. Transactions of Nonferrous Metals Society of China[J],2017, 27: 1476-1482.
    [10] A. Meyer. Journal of the Less Common Metals[J],1970, 20: 353-358.
    [11] M.E. van Dalen, R.A. Karnesky, J.R. Cabotaje, D.C. Dunand, D.N. Seidman. Acta Materialia[J],2009, 57: 4081-4089.
    [12] Y. Zhang, K. Gao, S. Wen, H. Huang, W. Wang, Z. Zhu, Z. Nie, D. Zhou. Journal of Alloys and Compounds[J],2014, 590: 526-534.
    [13] P.L. Rossiter, The electrical resistivity of metals and alloys[M]. Cambridge university press, 1991.
    [14] E. Clouet, J.M. Sanchez, C. Sigli. Physical Review B[J],2002, 65: 4105(4113).
    [15] Z. Mao, D.N. Seidman, C. Wolverton. APL Materials[J],2013, 1: 042103.
    [16] Z. Mao, D.N. Seidman, C. Wolverton. Acta Materialia[J],2011, 59: 3659-3666.
    [17] G. Kresse, J. Furthmuller. Computational Materials Science[J],1996, 6: 15-50.
    [18] G. Kresse, J. Furthmuller. Physical Review B[J],1996, 54: 11169-11186.
    [19] P.E. Blochl. Phys Rev B Condens Matter[J],1994, 50: 17953-17979.
    [20] H.J. Monkhorst, J.D. Pack. Physical Review B[J],1976, 13: 5188-5192.
    [21] J.D. Pack, H.J. Monkhorst. Physical Review B[J],1977, 16: 1748-1749.
    [22] M. Methfessel, A.T. Paxton. Phys Rev B Condens Matter[J],1989, 40: 3616-3621.
    [23] P.E. Blochl, O. Jepsen, O.K. Andersen. Phys Rev B Condens Matter[J],1994, 49: 16223-16233.
    [24] F. Birch. Physical Review[J],1947, 71: 809-824.
    [25] K. Parlinski, Z.Q. Li, Y. Kawazoe. Physical Review Letters[J],1997, 78: 4063-4066.
    [26] A. Togo, I. Tanaka. Scripta Materialia[J],2015, 108: 1-5.
    [27] J.W.Christian, The Theory of Transformations in Metals and Alloys Part I[M]. Pergamon, 2002.
    [28] C. Zener, The role of statistical mechanics in physical metallurgy[M]. OH: Cleveland, 1950: 16-27.
    [29] C. Wolverton, V. Ozolins. Physical Review B[J],2006, 73: 4104.
    [30] V. Ozolins, M. Asta. Phys Rev Lett[J],2001, 86: 448-451.
    [31] M. Asta, V. Ozolins. Physical Review B[J],2001, 64: 094104.
    [32] D. Shin, A. van de Walle, Y. Wang, Z.-K. Liu. Physical Review B[J],2007, 76: 144204.
    [33] E. Clouet. ASM Handbook [J],2009, 22: 203-219.
    Cited by
Get Citation

[高春来,Gao Kunyuan, Xiong Xiangyuan, Huang hui, Wen Shengping, Wu Xiaolan, Nie Zuoren. The study of the solubility of Er in Al from the first-principles[J]. Rare Metal Materials and Engineering,2020,49(8):2738~2745.]
DOI:10.12442/j. issn.1002-185X.20190623

Copy
Article Metrics
  • Abstract:777
  • PDF: 1149
  • HTML: 144
  • Cited by: 0
History
  • Received:July 29,2019
  • Revised:October 14,2019
  • Adopted:October 14,2019
  • Online: September 27,2020