+Advanced Search
Effect of Heating Rate on Formability of Ti6Al4V Alloy Micro-gear under an Electric Field
Fund Project:

National Nature Science Foundation of China (no.51705348), Sichuan science and technology program (no.2019YFG0359) and the Research Funds for the Central University (no.2019SCUH0013)

  • Article
  • | |
  • Metrics
  • |
  • Reference [28]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In this paper, a novel micro plastic forming technology is introduced for the forming of micro-gear using the high strength, toughness, and hard-to-deform Ti6Al4V alloy material. The experimental results showed that the Ti6Al4V alloy micro-gear can be achieved successfully from a cylindrical Ti6Al4V billet with a set of graphite die under an electric field. The Ti6Al4V material exhibits the best formability when the heating rate is 5 ℃/s, however, higher heating rate 30 ℃/s and 40 ℃/s can effectively shorten the time for pre-heating the material for deformation. The microstructure in all the formed samples have the Widmanst?tten structure. but gear center in contradiction to tooth top which exhibit a finer microstructure, and the β phase content of specimens with the heating rates of 5 ℃/s and 10 ℃/s are slightly higher than the original billet but specimens involving in heating rates 20 ℃/s, 30 ℃/s, and 40 ℃/s show nothing of the β phase from XRD analysis. Moreover, Vickers hardness of all formed samples increase than that of the original billet after an electric field, and which is independent on the heating rates.

    Reference
    References
    [1] Huang Sensen, Zhang Jinhu, Ma Yingjie et al. Journal of Alloys and Compounds[J], 2019, 791: 575-585
    [2] Mohanty Shalini, Kumar Vishnu, Das Alok kumar et al. Journal of Manufacturing Processes[J], 2019, 37: 28-41
    [3] Hashigata Ken, Chang Tso-Fu Mark, Tang Haochun et al. Microelectronic Engineering[J], 2019, 213: 13-17
    [4] Bhandari Suman, Murnal Mahantesh, Cao Jian. Ehmann, K. Procedia Manufacturing[J], 2019, 34: 418-423
    [5] Chen Xuezhen, Xu Zhengyang, Zhu Dong et al. Chinese Journal of Aeronautics[J], 2016, 29(1): 274-282
    [6] Bellotti Mattia, Qian Jun, Reynaerts Dominiek. Procedia CIRP[J], 2018, 68: 610-615
    [7] Salandro Wesley A, Jones Joshua J, Mcneal Timothy A et al. J. Manuf. Sci. Eng[J], 2010, 132(5): 11
    [8] Perkins Timothy A, Kronenberger Thomas J, Roth John T. J. Manuf. Sci. Eng[J]. 2007, 129(1): 84–94
    [9] Zhang Hao, Ren ZenCheng, Liu Jun et al. Journal of Alloys and Compounds[J], 2019, 802: 573-582
    [10] Bala Srinivasan P, Liang J, Blawert C et al. Applied Surface Science[J], 2009, 255(7): 4212–4218
    [11] Kim Moon-Jo, Lee Keunho, Oh Kyu Hwan et al. Scripta Materialia[J], 2014, 75: 58–61
    [12] Song Hui, Wang Zhongjin, Gao Tiejun. Trans. Nonferrous Met. SOC. China[J], 2007, 17(1): 87-92
    [13] Zhu Y H, To S, Lee W B et al. Materials Science and Engineering A[J], 2009, 501(1-2): 125–132
    [14] Li Dalong, Yu Enlin. Materials Science and Engineering A[J], 2009, 505(1-2): 62–64
    [15] Qiu Yao, Xin Ruishan, Luo Jianbin et al. Materials[J], 2019, 12(6): 890
    [16] Ding R, Guo Z X. Materials Science and Engineering A[J], 2004, 365(1-2): 172-179
    [17] Quan Guozheng, Luo Guichang, Liang Jianting et al. Computational Materials Science[J], 2015, 97: 136-147
    [18] Lu J Z, Wu L J, Sun G F et al. Acta Materialia[J], 2017, 127: 252-266
    [19] Motyka Maciej, Sieniawski Jan, Ziaja Waldemar. Materials Science and Engineering A[J], 2014, 599: 57-63
    [20] Zeng L R, Chen H L, Li X et al. Journal of Materials Science and Technology[J], 2018, 34(5): 782-787
    [21] Jiang Yanbin, Tang Guoyi, Shek Chanhuang et al. Acta Materialia[J], 2009, 57(16): 4797-4808
    [22] Chicos Lucia-Antoneta, Zaharia Sebastian Marian, Lancea Camil et al. Solar Energy[J], 2018, 173: 76–88
    [23] Jiang Baozhen, Emura Satoshi, Tsuchiya Koichi. Materials Science and Engineering A[J], 2018, 722: 129-135
    [24] Ren X D, Zhou W F, Liu F F et al. Applied Surface Science[J], 2016, 363: 44-49
    [25] Mengucci P, Gatto A, Bassoli E et al. Journal of the mechanical behavior of biomedical materials[J], 2017, 71: 1-9
    [26] Jiang Yanbin, Guan Lei, Tang Guoyi et al. Materials Science and Engineering: A[J], 2011, 528(16-17): 5627-5635
    [27] Dong Xuehua, Chen Fei, Chen Shan et al. Journal of Materials Processing Technology[J], 2015, 219: 199-208
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[yanxiangzhong, danlei, yangyi, tianyankang, huangkunlan. Effect of Heating Rate on Formability of Ti6Al4V Alloy Micro-gear under an Electric Field[J]. Rare Metal Materials and Engineering,2020,49(10):3294~3300.]
DOI:10.12442/j. issn.1002-185X.20200119

Copy
Article Metrics
  • Abstract:1170
  • PDF: 1320
  • HTML: 141
  • Cited by: 0
History
  • Received:February 24,2020
  • Revised:March 28,2020
  • Adopted:April 02,2020
  • Online: November 04,2020