+Advanced Search
Experimental and theoretical analysis of void evolution during irradiation in 0.29V-0.09Ta RAFM steel
Author:
Affiliation:

Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University

Fund Project:

The National Natural Science Foundation of China (Grant 51771097), Tsinghua University Initiative Scientific Research Program, The National Key Research and Development Plan (Grant 2017YFB0305201), The Science Challenge Project (Grant TZ2018004).

  • Article
  • | |
  • Metrics
  • |
  • Reference [36]
  • |
  • Related [1]
  • | | |
  • Comments
    Abstract:

    Helium ion irradiation at 200 °C, 350 °C and 550 °C was performed on a reduced activation ferritic/martensitic (RAFM) steel to investigate the evolution of voids during irradiation. Experimental results showed that radiation damage had a bell-shape distribution along the depth. Both void size and density increased as vacancy production rate increased. When irradiation temperature rose, void size increased and void density decreased. Faceted voids were observed at 550 °C. Voids aggregation at grain boundaries (GBs) and void denuded zones (VDZs) were observed at high temperatures. A phase field model was employed to investigate the void evolution mechanism. The simulation results showed that the void shape may be attributed anisotropic void interface energy. During irradiation, as time goes on, void evolution can be divided into three stages: incubation stage, nucleation stage and growth stage.

    Reference
    1. Yvon P., Carré F. Journal of Nuclear Materials[J]. 2009, 385(2): 217-22.
    2. Zinkle Steven J., Busby Jeremy T. Materials Today[J]. 2009, 12(11): 12-9.
    3. Klueh R. L., Nelson A. T. Journal of Nuclear Materials[J]. 2007, 371(1-3): 37-52.
    4. Yvon Pascal, Le Flem Marion, Cabet Céline, et al. Nuclear Engineering and Design[J]. 2015, 294(161-9.
    5. Klueh R. L., Cheng E. T., Grossbeck M. L., et al. Journal of Nuclear Materials[J]. 2000, 280(3): 353-9.
    6. Klueh R. L., Alexander D. J., Rieth M. Journal of Nuclear Materials[J]. 1999, 273(2): 146-54.
    7. Chen Jianguo, Liu Chenxi, Liu Yongchang, et al. Journal of Nuclear Materials[J]. 2016, 479(295-301.
    8. Tan L., Yang Y., Busby J. T. Journal of Nuclear Materials[J]. 2013, 442(1-3): S13-S7.
    9. Shankar Vani, Mariappan K., Nagesha A., et al. Fusion Engineering and Design[J]. 2012, 87(4): 318-24.
    10. Shankar Vani, Mariappan K., Sandhya R., et al. Fusion Engineering and Design[J]. 2015, 100(314-20.
    11. Kim Byung Hwan, Jang Jae Hoon, Seol Woo-Kyung, et al. Journal of Nuclear Materials[J]. 2018, 508(595-8.
    12. Kim Han Kyu, Lee Ji Won, Moon Joonoh, et al. Journal of Nuclear Materials[J]. 2018, 500(327-36.
    13. Trinkaus H., Singh B. N. Journal of Nuclear Materials[J]. 2003, 323(2-3): 229-42.
    14. Yamamoto T., Odette G. R., Miao P., et al. Journal of Nuclear Materials[J]. 2009, 386-388(338-41.
    15. Wang Xu, Monterrosa Anthony M., Zhang Feifei, et al. Journal of Nuclear Materials[J]. 2015, 462(119-25.
    16. Fu Z. Y., Liu P. P., Wan F. R., et al. Fusion Engineering and Design[J]. 2015, 91(73-8.
    17. Gaganidze E., Petersen C., Aktaa J. Journal of Nuclear Materials[J]. 2009, 386-388(349-52.
    18. Klueh R. L., Hashimoto N., Sokolov M. A., et al. Journal of Nuclear Materials[J]. 2006, 357(1-3): 169-82.
    19. Henry J., Mathon M. H., Jung P. Journal of Nuclear Materials[J]. 2003, 318(249-59.
    20. Jiao Z., Ham N., Was G. S. Journal of Nuclear Materials[J]. 2007, 367-370(440-5.
    21. Hetherly J., Martinez E., Di Z. F., et al. Scripta Materialia[J]. 2012, 66(1): 17-20.
    22. Sekio Yoshihiro, Yamashita Shinichiro, Sakaguchi Norihito, et al. Journal of Nuclear Materials[J]. 2015, 458(355-60.
    23. Millett Paul C., El-Azab Anter, Rokkam Srujan, et al. Computational Materials Science[J]. 2011, 50(3): 949-59.
    24. Millett Paul C., El-Azab Anter, Wolf Dieter. Computational Materials Science[J]. 2011, 50(3): 960-70.
    25. Hu Shenyang, Burkes Douglas E., Lavender Curt A., et al. Journal of Nuclear Materials[J]. 2016, 479(202-15.
    26. Hu S. Y., Murray J., Weiland H., et al. Calphad[J]. 2007, 31(2): 303-12.
    27. Lin-Yun Liang, Guang-Hong Lü. Acta Phys Sin-Ch Ed[J]. 2013, 62(18):
    28. Liu W. B., Wang N., Ji Y. Z., et al. Journal of Nuclear Materials[J]. 2016, 479(316-22.
    29. Chen L. Q., Shen J. Comput Phys Commun[J]. 1998, 108(2-3): 147-58.
    30. Millett Paul C., Tonks Michael. Current Opinion in Solid State and Materials Science[J]. 2011, 15(3): 125-33.
    31. Rokkam Srujan, El-Azab Anter, Millett Paul, et al. Modelling and Simulation in Materials Science and Engineering[J]. 2009, 17(6): 064002.
    32. Marquis Emmanuelle A., Hu Rong, Rousseau Thomas. Journal of Nuclear Materials[J]. 2011, 413(1): 1-4.
    33. Hu Wenhui, Guo Liping, Chen Jihong, et al. Fusion Engineering and Design[J]. 2014, 89(4): 324-8.
    34. Was Gary S., Wharry Janelle P., Frisbie Brian, et al. Journal of Nuclear Materials[J]. 2011, 411(1-3): 41-50.
    35. Millett Paul C., Tonks Michael R., Biner S. B., et al. Journal of Nuclear Materials[J]. 2012, 425(1-3): 130-5.
    36. Liu W. B., Zhang J. H., Ji Y. Z., et al. Journal of Nuclear Materials[J]. 2018, 500(213-9.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Xia Lidong, Huo Xiaojie, Chen Hao, Yang Zhigang, Zhang Chi. Experimental and theoretical analysis of void evolution during irradiation in 0.29V-0.09Ta RAFM steel[J]. Rare Metal Materials and Engineering,2021,50(4):1139~1145.]
DOI:10.12442/j. issn.1002-185X.20200259

Copy
Article Metrics
  • Abstract:901
  • PDF: 1219
  • HTML: 170
  • Cited by: 0
History
  • Received:April 19,2020
  • Revised:May 07,2020
  • Adopted:May 08,2020
  • Online: May 08,2021