+Advanced Search
  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The flow behavior of Ti2041 alloy was studied through hot compressive experiments. The constitutive model of alloy established by back propagation (BP) neural network has high accuracy, which correlation coefficient reached 0.99613, the average relative error is 4.498%, the predictive value of deviation within 10% data points up to 92.98%. Based on the experimental data, the strain rate sensitivity, the power dissipation and the instability parameter were investigated. Processing maps were established. Through processing map prediction and microstructure observation, the instability zones are mainly flow localization(650~775℃/0.056~1s-1) and mechanical instability (825~900℃/0.056~1s-1), and the deformation mechanism of the stability zone is mainly dynamic recrystallization. It is found that the optimal deformation parameters are that: deformation temperature760~825℃/825~900℃, strain rate 0.001~0.01s-1 /0.0032~ 0.056s-1.

    Reference
    1Lin Y C, Chen X M, Materials Design[J], 2011;32(4):1733
    2Ma X, Zeng W D, Tian F,et al. Journal of Materials Engineering and Performance[J].2012,21(8):1591
    3Li H Y,Wei D D,Li Y H, et al. Materials design [J].2012,35:557.
    4Huang C Q, Jia X D, Zhang Z W, Materials[J], 2018;11(5):855.
    5Lin Y C, Huang J, Li H B, et al. Vacuum [J], 2018;157:83
    6Li J Q, Liu J, Cui Z S, Materials Design[J], 2014;56:889
    7Wu R H, Liu Y, Geng C, et al.Journal of Alloys and Compounds [J],2017;713:212
    8Sun Y, Feng X Y, Hu L X,et al. Journal of Alloys and Compounds [J],2018;753:256
    9Zang Q H, Yu H S, Lee Y S, et al. Materials Characterization[J],2019; 151:404
    10Su Z X, Wan L, Sun C Y,et al. Materials Characterization[J],2016;122:90
    11Lin Y C, Nong F Q, Chen X M, et al. Vacuum[J], 2017; 137:104
    12Lin Y C, Chen X M, Wen D X, et al. Computational Materials Science[J], 2014;83:282
    13Cai D Y, Xiong L Y, Liu W C, et al. Materials Characterization[J],2007; 58(10):941
    14Liu J, Cui Z S, Li C X, Journal of Materials Processing Technology[J],2008;205(1):497
    15Prasad Y V R K, Seshacharyulu T, Materials Science and Engineering: A[J],1998;243(1):82
    16Prasad Y V R K, Journal of Materials Engineering and Performance[J],2003; 12:638
    17Prasad Y V R K, Seshacharyulu T, International Materials Reviews[J],1998; 43(6):243
    18Lukaszek-solek A, Krawczyk J, Materials Design [J],2015; 65:165
    19Ramanathan S, Karthikeyan R, Ganasen G, Materials Science and Engineering: A[J],2006;441(1):321
    20 Wang H Y, Xue E S, Nan XL, et al.Scripta Materialia[J],2013;68(5):229
    21 Suo T, Chen Y Z, Li Y L, et al. Materials Science and Engineering:SA[J],2013; 560:545
    22 Zhang F,Sun J L,Shen J, et al. Materials Science and Engineering:SA[J],2014; 613:141
    23 Zhong L W, Gao W L, Feng Z H,et al. Journal of Materials Science Technology[J],2019; 35(10):2409
    24 Cheng W L, Bai Y, Ma S C, et al. Journal of Materials Science Technology[J],2019; 35(6):1198
    25Liang H Q, Nan Y, Ning Y Q, et al. Journal of Alloys and Compounds[J],2015;632:478
    26Ma L X, Wan M, Li W D, et al. Journal of Alloys and Compounds[J],2019; 808:151759
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Zhou Xuan, Wang Kelu, Lu Shiqiang, Li Xin. Study on the hot deformation behavior of Ti2041 alloy based on BP neural network and 3D processing map[J]. Rare Metal Materials and Engineering,2021,50(4):1233~1240.]
DOI:10.12442/j. issn.1002-185X.20200303

Copy
Article Metrics
  • Abstract:731
  • PDF: 1415
  • HTML: 166
  • Cited by: 0
History
  • Received:May 09,2020
  • Revised:June 08,2020
  • Adopted:June 09,2020
  • Online: May 08,2021