+Advanced Search
Research Progress in Effect of Alloying on Electrochemical Corrosion Rates of Mg Alloys
Author:
Affiliation:

National Key Laboratory for Remanufacturing, Academy of Army Armored Force

Clc Number:

TG13,TG146.2+2,TG178

Fund Project:

The National Key Technologies R&D Program of China

  • Article
  • | |
  • Metrics
  • |
  • Reference [78]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The great potential for applications in automotive, aerospace and electronic industries of magnesium alloys can be attributed to their desirable properties such as low density, high specific strength and stiffness, superior damping capacity and good electromagnetic interference shielding. Meanwhile, the alloys are also finding broad medical applications and receiving extensive scientific research due to their biocompatibility and biodegradability in physiological media. However, the Achilles heel of magnesium is that it corrodes too fast in solutions. Alloying is one of the most important approaches to slow down corrosion rates of magnesium alloys. It facilitates the creation of new Mg alloys by optimizing the composition and content of alloying elements in the stage of materials design, so that the new alloys acquire desired properties to meet the requirements of various applications. During alloying, the elements, secondary phases, gain size and defects greatly influence corrosion kinetics and electrochemistry of magnesium alloys. In terms of corrosion kinetics, most alloying elements can affect the activity of anodic and/or cathodic reactions of Mg, though they have negligible effects on the chemical stability. The secondary phases always serve as cathodes in the micro-corrosion couples, such that the micro-galvanic corrosion is possible and the dissolution of Mg is accelerated. Microstructural homogeneity and grain refinement are responsible for the decrease of corrosion rates of Mg alloys. It is believed that alloys with relatively high grain boundary densities tend to exhibit an analogous relationship between grain size and corrosion rate like the ‘Hall-Petch’ relationship, which can quantitatively reveal the relationship between corrosion rates and grain size. In addition, the defects including dislocations, pores, cracks and stresses are ready to trigger the dissolution of Mg since these locations have high free energy. In this article, the influences of alloying on the corrosion rates of Mg alloys were reviewed from the electrochemical viewpoint, on the basis of the corrosion nature of magnesium metal. Then the possibility of an improved anti-corrosion performance of Mg alloys by some alloying-related methods such as multi-elemental alloying, micro-alloying and alloying control was analyzed. At last, it was pointed out that the future development directions of electrochemical corrosion of magnesium alloys under the influences of alloying, to contribute much broader applications in the future.

    Reference
    [1] Esmaily M., Svensson J. E., Fajardo S. et al. Progress in Materials Science[J]. 2017, 89:92-193.
    [2] Kulekci Mustafa Kemal. The International Journal of Advanced Manufacturing Technology[J]. 2008, 39(9):851-65.
    [3] Ding Wenjiang, Fu Penghuai, Peng Liming. Spacecraft Environment Engineering[J]. 2011, 28:103-9.
    [4] Cai Shuhua, Lei Ting, Li Nianfeng et al. Materials Science and Engineering: C[J]. 2012, 32(8):2570-7.
    [5] Gusieva K., Davies C. H. J., Scully J. R. et al. International Materials Reviews[J]. 2015, 60(3):169-94.
    [6] Zhao Chaoyong, Pan Fusheng, Zhang Lei et al. Materials Science and Engineering: C[J]. 2017, 70:1081-8.
    [7] Erinc Muge, Sillekens W. H., Mannens R. G. T. M. et al. Magnesium Technology[J]. 2009:209-14.
    [8] Gobara Mohamed, Shamekh Mohamed, Akid Robert. Journal of Magnesium and Alloys[J]. 2015, 3(2):112-20.
    [9] Hu Yaning, Kish Joseph R., Mcdermid Joseph R. et al. Effect of some Microstructural Parameters on the Corrosion Resistance of Magnesium Alloys[M]. Cham:Springer International Publishing, 2016.
    [10] Cao Chunan(曹楚南). Principles of electrochemistry of corrosion(腐蚀电化学原理)[M]. Beijing:Chemical industry press, 2008.
    [11] Taheri M., Phillips R. C., Kish J. R. et al. Corrosion Science[J]. 2012, 59:222-8.
    [12] Qiu Liu(邱六), Zhu Sheng(朱胜), Wang Xiaoming(王晓明). Hot Working Technology[J]. 2018, 47(13):31.
    [13] On?ák Milan, W?odarczyk Rados?aw, Sauer Joachim. The Journal of Physical Chemistry Letters[J]. 2015, 6(12):2310-4.
    [14] On?ák Milan, W?odarczyk Rados?aw, Sauer Joachim. The Journal of Physical Chemistry C[J]. 2016, 120(43):24762-9.
    [15] W?odarczyk Rados?aw, Sierka Marek, Kwapień Karolina et al. The Journal of Physical Chemistry C[J]. 2011, 115(14):6764-74.
    [16] Vermilyea David A., Kirk Carol F. Journal of The Electrochemical Society[J]. 1969, 116(11):1487.
    [17] Song Guangling, Atrens Andrej. Advanced Engineering Materials[J]. 2007, 9(3):177.
    [18] Song Guangling(宋光铃). Magnesium alloy corrosion and protection(镁合金腐蚀与防护)[M]. Beijing:Chemical Industry Press, 2006.
    [19] Godard Hugh P. The corrosion of light metals[M]. New York:Wiley, 1967.
    [20] Witte Frank, Hort Norbert, Vogt Carla et al. Current Opinion in Solid State and Materials Science[J]. 2008, 12(5):63-72.
    [21] Rokhlin Lazar. Magnesium Alloys Containing Rare Earth Metals[M]. UK:Taylor and Francis, 2003.
    [22] Liu Yuxiang. Corrosion behaviour of biodegradable Mg-1Ca alloy in simulated body fluid[D]. UK, The University of Manchester; 2018.
    [23] Cain Taylor, Bland Leslie, Birbilis Nick et al. Corrosion[J]. 2014, 70:1043-51.
    [24] Birbilis N., Williams G., Gusieva K. et al. Electrochemistry Communications[J]. 2013, 34:295-8.
    [25] Birbilis N., Easton M. A., Sudholz A. D. et al. Corrosion Science[J]. 2009, 51(3):683-9.
    [26] Shaw B. A., Wolfe R. C. ASM Handbook[J]. 2005, 13:205-27.
    [27] Blawert C., Fechner D., H?che D. et al. Corrosion Science[J]. 2010, 52(7):2452-68.
    [28] Liu Jingan(刘静安), Xie Shuisheng(谢水生), Ma Zhixin(马志新). JIANMING MEIHEJIN CAILIAO SHOUCE(简明镁合金材料手册)[M]. Beijing:Metallurgical Industry Press, 2016.
    [29] Parthiban G. T., Palaniswamy N., Sivan V. Anti-Corrosion Methods and Materials[J]. 2009, 56(2):79-83.
    [30] Wang Yizhi(王益志). Foundry[J]. 2001, (02):61-6.
    [31] Zheng Xiaodong(郑晓东), Dong Tianshun(董天顺), Wang Tuo(王拓). Light Alloy Fabrication Technology[J]. 2017, 45(2):6-11.
    [32] Xu Wanqiang, Birbilis Nick, Sha Gang et al. Nature Materials[J]. 2015, 14(12):1229-35.
    [33] Islam Md Mezbahul, Mostafa Ahmad, Medraj Mamoun. Journal of Materials[J]. 2014, 2014:33.
    [34] Sudholz A., Kirkland Nicholas, Buchheit R. et al. Electrochemical and Solid-State Letters[J]. 2011, 14:C5-C7.
    [35] Wang Baojie(王保杰), Luan Jiyu(栾吉瑜), Wang Shidong(王士栋). Journal of Chinese society for corrosion and protection[J]. 2019, 39(2):89-95.
    [36] Song Guangling, Atrens Andrej, Wu Xianliang et al. Corrosion Science[J]. 1998, 40(10):1769-91.
    [37] Willbold Elmar, Gu Xuenan, Albert Devon et al. Acta Biomaterialia[J]. 2015, 11:554-62.
    [38] Gavras Serge, Easton Mark A., Gibson Mark A. et al. Journal of Alloys and Compounds[J]. 2014, 597:21-9.
    [39] Orlov D., Ralston K. D., Birbilis N. et al. Acta Materialia[J]. 2011, 59(15):6176-86.
    [40] Op''t Hoog C., Birbilis N., Estrin Y. Advanced Engineering Materials[J]. 2008, 10(6):579-82.
    [41] Ralston K. D., Birbilis N. Corrosion[J]. 2010, 66(7):075005--13.
    [42] Birbilis N., Ralston K. D., Virtanen S. et al. Corrosion Engineering, Science and Technology[J]. 2010, 45(3):224-30.
    [43] Song D., Ma A. B., Jiang J. H. et al. Corrosion Science[J]. 2011, 53(1):362-73.
    [44] Song Dan, Ma Aibin, Jiang Jinghua et al. Corrosion Science[J]. 2010, 52(2):481-90.
    [45] Liao Jinsun, Hotta Makoto, Yamamoto Naotsugu. Corrosion Science[J]. 2012, 61:208-14.
    [46] Ralston K. D., Birbilis N., Davies C. H. J. Scripta Materialia[J]. 2010, 63(12):1201-4.
    [47] Zeng Rongchang, Kainer Karl Ulrich, Blawert Carsten et al. Journal of Alloys and Compounds[J]. 2011, 509(13):4462-9.
    [48] Aung Naing Naing, Zhou Wei. Corrosion Science[J]. 2010, 52(2):589-94.
    [49] Hu Henry, Luo Alan. The Journal of The Minerals, Metals Materials Society[J]. 1996, 48(10):47-51.
    [50] Sin S., Elsayed Abdallah, Ravindran C. R. Rhupa. International Materials Reviews[J]. 2013, 58:419-36.
    [51] Wang Wei, Huang Yuguang, Wu Guohua et al. Journal of Alloys and Compounds[J]. 2009, 480:386-91.
    [52] Song Guangling, John D. H., Abbott Trevor. International Journal of Cast Metals Research[J]. 2005, 18.
    [53] Zheng Tianxu, Hu Yaobo, Meng Wanqiu et al. Materials[J]. 2019, 12(16).
    [54] Gu Jialin(顾家琳), Yang Zhigang(杨志刚), Haijin(邓海金) Deng. Introduction of Materials Science and Engineering(固体科学与工程概论)[M]. Beijing:TsingHua University Press, 2005.
    [55] Ma Hui, Chen Xingqiu, Li Ronghan et al. Acta Materialia[J]. 2017, 130:137-46.
    [56] Ma Hui, Wu Liping, Liu Chen et al. Acta Materialia[J]. 2020, 183:377-89.
    [57] Zheng Yang, Li Yan, Chen Jihua et al. Corrosion Science[J]. 2015, 90:445-50.
    [58] Wang B. J., Xu D. K., Dong J. H. et al. Scripta Materialia[J]. 2014, 88:5-8.
    [59] Neil W. C., Forsyth M., Howlett P. C. et al. Corrosion Science[J]. 2009, 51(2):387-94.
    [60] Zhang Jing, Dou Yuchen, Zheng Yi. Scripta Materialia[J]. 2014, 80:17-20.
    [61] Nie J. F., Zhu Y. M., Liu J. Z. et al. Science[J]. 2013, 340(6135):957.
    [62] Ma Hui, Liu Min, Chen Weiliang et al. Physical Review Materials[J]. 2019, 3.
    [63] King A. D., Birbilis N., Scully J. R. Electrochimica Acta[J]. 2014, 121:394-406.
    [64] Liu Chen, Ren Zheng, Xu Yongdong et al. Scanning[J]. 2018, 2018:9216314.
    [65] Radha R., Sreekanth D. Journal of Magnesium and Alloys[J]. 2017, 5(3):286-312.
    [66] Zander Daniela, Zumdick Naemi A. Corrosion Science[J]. 2015, 93:222-33.
    [67] Ibrahim Hamdy, Klarner Andrew D., Poorganji Behrang et al. Journal of the Mechanical Behavior of Biomedical Materials[J]. 2017, 69:203-12.
    [68] Gu Xuenan, Zheng Yufeng, Cheng Yan et al. Biomaterials[J]. 2009, 30(4):484-98.
    [69] Florian David, Melia Michael, Steuer Fritz et al. Biointerphases[J]. 2017, 12:021003.
    [70] Takenaka Toshihide, Ono Takami, Narazaki Yuji et al. Electrochimica Acta[J]. 2007, 53(1):117-21.
    [71] Südholz A. D., Birbilis N., Bettles C. J. et al. Journal of Alloys and Compounds[J]. 2009, 471(1):109-15.
    [72] Jin Hexi, Wang Richu, Peng Chaoqun et al. Journal of Central South University[J]. 2012, 19(8):2086-93.
    [73] Zhou Wei, Aung Naing Naing, Sun Yangshan. Corrosion Science[J]. 2009, 51(2):403-8.
    [74] Gandel D. S., Easton M. A., Gibson M. A. et al. Corrosion[J]. 2013, 69(8):744-51.
    [75] Gandel D. S., Easton M. A., Gibson M. A. et al. Corrosion Science[J]. 2014, 81:27-35.
    [76] Cavanaugh M. K., Birbilis N., Buchheit R. G. et al. Scripta Materialia[J]. 2007, 56(11):995-8.
    [77] Foley D. C., Al-Maharbi M., Hartwig K. T. et al. Scripta Materialia[J]. 2011, 64(2):193-6.
    [78] Minárik P., Král R., Jane?ek M. Applied Surface Science[J]. 2013, 281:44-8.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Liu Yuxiang. Research Progress in Effect of Alloying on Electrochemical Corrosion Rates of Mg Alloys[J]. Rare Metal Materials and Engineering,2021,50(1):361~372.]
DOI:10.12442/j. issn.1002-185X.20200344

Copy
Article Metrics
  • Abstract:941
  • PDF: 1584
  • HTML: 176
  • Cited by: 0
History
  • Received:May 19,2020
  • Revised:August 05,2020
  • Adopted:August 28,2020
  • Online: February 05,2021