Abstract:A simplified computational model for obtaining large piezomagnetic effect of magnetostrictive-electromagnetic hybrid vibration energy harvester was presented. During the model establishment, the influence of compressive stress ?σ and magnetic field ΔH on the piezomagnetic effect of Tb0.3Dy0.7Fe2 alloy was studied, and their separate influence on magnetic flux density ?B of magnetostrictive material was investigated. Then, two methods, pre-loads-based method and impact stress-based method, were used to discuss the optimal criterion of hybrid piezomagnetic effect for the fabrication of magnetostrictive-electromagnetic generator. Finally, the modeling accuracy for obtaining large piezomagnetic effect was testified, and the experiment and theoretical results were in good agreement. Results show that the modeling can efficiently and accurately obtain the piezomagnetic effect for hybrid magnetostrictive material-based harvester under different application environments, which is of significance for design and fabrication of magnetostrictive-electromagnetic hybrid vibration energy harvester for obtaining large piezomagnetic effect.