+Advanced Search
Effect of Morphology of Amorphous TiO2 Nanotube on Its Electrochemical Performance as Supercapacitors
Author:
Affiliation:

1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;2.Shanxi Academy of Analytical Sciences, Taiyuan 030006, China

Clc Number:

TN304

Fund Project:

Special Talents Science and Technology Innovation Project of Shanxi Province of China (201705D211007); Shanxi Provincial Natural Science Foundation of China (201801D121099, 201801D221140, 201903D421081)

  • Article
  • | |
  • Metrics
  • |
  • Reference [58]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Hydrogenated amorphous TiO2 nanotube arrays (H@am-TNAs) with different tube diameter, length and wall thickness were prepared through the modified two-step electrochemical anodization and electrochemical hydrogenation method. Results show that the electrochemical hydrogenation has almost no effect on the topology of TiO2 nanotube arrays. After electrochemical hydrogenation, the nanotubes have a specific capacitance of 4.05 mF·cm-2 at 100 mV·s-1 that is 20 times larger than that of the corresponding one without hydrogenation with the same tube length and diameter. The capacitance of the nanotube is not only related to the tube length but also influenced by tube diameter. The aspect ratio of the nanotubes shows a linear relationship if fitted by an exponential function. The areal capacitance/aspect ratio reaches 0.056, which is almost equivalent to that of the anatase phase TiO2 nanotubes. The nanotubes anodized for 2 h own the smallest charge transfer resistance, the best ion diffusion/transportation kinetics, and the highest areal capacity. Furthermore, to study the wettability in the electrochemical properties of the H@am-TNAs, the same H@am-TNAs electrode was soaked in the electrolyte for different hours before C-V and C-P testing, and the results show that the capacitance decreases with increasing the soaking time.

    Reference
    [1] Hai Z, Karbalaei Akbari M, Xue C et al. Composites Communications[J], 2017, 5: 31
    [2] He Chong, Chen Zhijie, Lin Deyuan et al. Rare Metal Materials and Engineering[J], 2017, 46(9): 2589 (in Chinese)
    [3] Zhou He, Zhang Yanrong. The Journal of Physical Chemistry C[J], 2014, 118(11): 5626
    [4] Simon P, Gogotsi Y. Materials for Electrochemical Capacitors, Nature Materials[J], 2008, 7(11): 845
    [5] Wang Ying, Wang Peng, Song Wenxue. Rare Metal Materials and Engineering[J], 2019, 48(3): 1022 (in Chinese)
    [6] Huang Yi, Liang Jiajie, Chen Yongsheng. Small[J], 2012, 8(12): 1805
    [7] Kiamahalleh M V, Zein S H S, Najafpour G et al. Nano[J], 2012, 7(2): 1 230 002
    [8] Tan C W, Tan H K, Ong Y T et al. Environmental Chemistry Letters[J], 2012, 10(3): 265
    [9] Pandolfo A G, Hollenkamp A F. Journal of Power Sources[J], 2006, 157(1):11
    [10] Jiang Jian, Li Yuanyuan, Liu Jinping et al. Advanced Materials[J], 2015, 24(38): 5166
    [11] Yan Jun, Wang Qian, Wei Tong et al. Advanced Energy Materials[J], 2014, 4(4): 157
    [12] Wang Rutao, Yan Xingbin, Lang Junwei et al. Journal of Materials Chemistry A[J], 2014, 2(32): 12 724
    [13] Li Bing, Zheng Mingbo, Xue Huaiguo et al. Cheminform[J], 2016, 3(2): 175
    [14] Pang Huan, Li Xinran, Zhao Qunxing et al. Nano Energy[J], 2017, 35: 138
    [15] Zhu Yanwu, Murali S, Stoller M D et al. Science[J], 2011, 332(6037): 1537
    [16] Chakravarty D, Kumar P, Ugale V S et al. European Journal of Inorganic Chemistry[J], 2015(9): 2544
    [17] Xiao Xiao, Li Xinran, Zheng Shasha et al. Advanced Materials Interfaces[J], 2017, 4(6): 1 600 798
    [18] Wang Yang, Ye Guiqin, Chen Huanhuan et al. Journal of Materials Chemistry A[J], 2015, 3(29): 15 292
    [19] Jabeen N, Hussain A, Xia Q et al. Advanced Materials[J], 2017, 29(32): 1 700 804
    [20] Shao Zhou, Li Hongji, Li Mingji et al. Energy[J], 2015, 87: 578
    [21] Gobal F, Faraji M. Journal of Electroanalytical Chemistry[J], 2013, 691: 51
    [22] Zhu Changrong, Xia Xinhui, Liu Jilei et al. Nano Energy[J], 2014, 4: 105
    [23] Macak J M, Albu S P, Schmuki P. Rapid Research Letters[J], 2010, 1(5): 181
    [24] Macak J M, Gong B G, Hueppe M et al. Advanced Materials[J], 2007, 19(19): 3027
    [25] Macak J M, Schmuki P. Electrochimica Acta[J], 2006, 52(3): 1258
    [26] Wei W, Berger S, Hauser C et al. Electrochemistry Communi-cations[J], 2010, 12(9): 1184
    [27] Fang Haitao, Liu Min, Wang Dawei et al. Nanotechnology[J], 2009, 20(22): 225 701
    [28] Paulose M, Shankar K, Yoriya S et al. The Journal of Physical Chemistry B[J], 2006, 110(33): 16 179
    [29] Shankar K, Mor G K, Prakasam H E et al. Nanotechnology[J], 2007, 18(6): 65 707
    [30] De Tacconi N, Chenthamarakshan C, Yogeeswaran G et al. The Journal of Physical Chemistry B[J], 2006, 110(50): 25 347
    [31] Salari M, Aboutalebi S H, Konstantinov K et al. Physical Chemistry Chemical Physics: PCCP[J], 2011, 13(11): 5038
    [32] Qiu Jingxia, Li Sheng, Gray Evan et al. Journal of Physical Chemistry C[J], 2014, 118(17): 8824
    [33] Ramadoss A, Sang J K. Journal of Alloys & Compounds[J], 2013, 561: 262
    [34] Yu Cuiping, Wang Yan, Cui Jiewu et al. Acta Physico-Chimica Sinica[J], 2017, 33(10): 1944
    [35] Zhang Wanggang, Liu Yiming, Li Wenyi et al. Applied Surface Science[J], 2019, 476: 948
    [36] Wu Hui, Li Dongdong, Zhu Xufei et al. Electrochimica Acta[J], 2014, 116(116): 129
    [37] Chen Xiaobo, Liu Lei, Yu Peter et al. Science[J], 2011, 331(6018): 746
    [38] Naldoni A, Allieta M, Santangelo S et al. Journal of the American Chemical Society[J], 2012, 134(18): 7600
    [39] Liu Lei, Chen Xiaobo. Chemical Reviews[J], 2014, 114(19): 9890
    [40] Heersche H, Jarillo-Herrero P, Oostinga J et al. Nature[J], 2007, 446: 56
    [41] Yan J, Ren C E, Maleski K et al. Advanced Functional Materials[J], 2017, 27: 1 701 264
    [42] Wang Gongming, Wang Hanyu, Ling Yichuan et al. Nano Letters[J], 2011, 11(7): 3026
    [43] Choi H J, Kim J H, Kim H K et al. Electrochimica Acta[J], 2016, 208: 202
    [44] Luo Jiayan, Xia Yongyao. Journal of Power Sources[J], 2009, 186(1): 224
    [45] Lee S H, Lee S G, Yoon J R et al. Journal of Power Sources[J], 2015, 273: 839
    [46] Futaba D N, Hata K, Yamada T et al. Nature Materials[J], 2006, 5(12): 987
    [47] Mai L Q, Minhaskhan A, Tian X et al. Nature Communications[J], 2013, 4(1): 2923
    [48] Zhou Zhengping, Wu Xiangfa, Hou Haoqing. RSC Advances[J], 2014, 4(45): 23 622
    [49] Salari M, Aboutalebi S H, Ekladious I et al. Advanced Materials Technologies[J], 2017, 3(2): 1 700 194
    [50] Wu Hui, Li Dongdong, Zhu Xufei et al. Electrochimica Acta[J], 2014, 116: 129
    [51] Stoller M D, Park S, Zhu Y et al. Nano Letters[J], 2008, 8(10): 3498
    [52] Salari M, Konstantinov K, Liu H K. Journal of Materials Chemistry[J], 2011, 21(13): 5128
    [53] Salari M, Aboutalebi S H, Chidembo A T et al. Physical Chemistry Chemical Physics: PCCP[J], 2012, 14(14): 4770
    [54] Wang J, Polleux J, Lim J et al. Journal of Physical Chemistry C[J], 2007, 111(40): 14 925
    [55] Zhou He, Zhang Yanrong. Journal of Physical Chemistry C[J], 2014, 118(11): 5626
    [56] Lu Xihong, Wang Gongming, Zhai Teng et al. Nano Letters[J], 2012, 12(3): 1690
    [57] Xiao Peng, Liu Dawei, Garcia B B et al. Sensors & Actuators B: Chemical[J], 2008, 134(2): 367
    [58] Jorcin J B, Orazem M E, Pébère N et al. Electrochimica Acta[J], 2006, 51(8): 1473
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Song Zhiyuan, Li Xianrong, Zhuang Changwan, Wei Aili, Zhang Wanggang, Liu Yi-ming. Effect of Morphology of Amorphous TiO2 Nanotube on Its Electrochemical Performance as Supercapacitors[J]. Rare Metal Materials and Engineering,2021,50(10):3485~3494.]
DOI:10.12442/j. issn.1002-185X.20200610

Copy
Article Metrics
  • Abstract:532
  • PDF: 1224
  • HTML: 273
  • Cited by: 0
History
  • Received:August 17,2020
  • Revised:September 27,2021
  • Adopted:October 15,2020
  • Online: October 28,2021
  • Published: October 25,2021