+Advanced Search
Research Progress on Corrosion Fatigue Behavior of Novel Biomedical Degradable Magnesium-Based Alloys
Affiliation:

1.North China University of Science and Technology;2.University of Science and Technology Beijing

Clc Number:

TG146.2+2;TG178

Fund Project:

Supported by The National Key Research and Development Program of China (2016YFB0700303); Natural science foundation of Hebei province (E20209153); Fundamental Research Funds for the Provincial Universities of Hebei (JYG2019001, JQN2019010); State Key Lab of Advanced Metals and Materials (2020-Z12); Science and Technology Project of Tangshan (20130205b)

  • Article
  • | |
  • Metrics
  • |
  • Reference [81]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Magnesium-based alloys were known as the new generation ‘revolutionary medical metal materials’, due to its better biological safety, excellent mechanical bearing effect and controllable degradation rate in vivo and in vitro. However, the corrosion resistance of magnesium alloy is very poor under the humid atmosphere. Particularly in a complicated human physiological environment, implant materials need to undergo the synergistic effects of dynamic alternating load and corrosive medium. Thus, it can cause the mechanical fixation and mechanical support roles of the Mg-based alloys decreased dramatically, resulting in the premature implantation failure. As a result, the coupling mechanism of applied load, frequency and corrosion factors affecting fatigue failure of medical magnesium alloys was investigated. In view of the quantitative relationships between corrosion fatigue life, fracture micro-zone characteristics and corrosion rate of biomedical Mg alloys in vivo and in vitro, the microscopic mechanism of corrosion fatigue failure under cyclic loading was described. Meantime, the initiation and propagation mechanism of fatigue micro-cracks were thoroughly analyzed; the improvement methods of corrosion fatigue properties of Mg alloys were comprehensively summarized; and the application prospect and development direction of biodegradable magnesium alloys for biomedical use were forecasted.

    Reference
    [1] Yu W M, Li J Y, Li J X et al. Rare Metal Materials and Engineering[J], 2019, 48(12): 4016
    [2] Zheng Y F, Wu Y H. Acta Metallurgica Sinica[J], 2017, 53(3): 257
    (郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257)
    [3] He Y, Tao H, Zhang Y, et al. Science Bulletin, 2009, 54(3): 484
    [4] Zheng Y F, Liu J N. Materials China[J], 2020, 39(02): 92
    [5] Zhang Y, Li J, Li J. Journal of Alloys and Compounds[J], 2018, 730: 458
    [6] Zhang Y, Li J Y, Liaw P K, et al. Journal of Alloys and Compounds[J], 2018, 769: 552
    [7] Zhang Y, Li J X, Li J Y. Journal of Alloys and Compounds[J], 2017, 728: 37
    [8] Li J X, Zhang Y, Li J Y, et al. Journal of Materials Science & Technology[J], 2018, 34(2): 299
    [9] Cai C H, Song R B, Wen E D, et al. Materials & Design[J], 2019, 182: 108038
    [10] Zhang Y, Li J Y, Liu Y, et al. Materials Characterization[J], 2020, 165:110368
    [11] Xu Y Z, Li J Y, Qi M F, et al. Journal of Materials Science[J], 2020, 55(3): 1231
    [12] ZHENG Y F, YANG H T. Acta Metallurgica Sinica[J], 2017, 53(10): 1227
    (郑玉峰,杨宏韬. 金属学报. 2017, 53(10): 1227)
    [13] M. Toorani, M. Aliofkhazraei. Surfaces and Interfaces[J],2019,14:262
    [14] Kirkland N T, Birbilis N, Staiger M P. Acta Biomaterialia[J], 2012, 8(3): 925
    [15] S.H. Teoh. International Journal of Fatigue[J], 2000, 22(10): 825
    [16] Fu Z X, Li X F, Luo L Z. Equipment Environmental Engineering[J]. 2019,16(07):71
    [17] Bian D, Zhou W R, Liu Y, et al. Acta Biomaterialia[J], 2016, 41:351
    [18] Pan J P, Fu P H, Peng L M, et al. International Journal of Fatigue[J], 2019, 118: 104
    [19] He C, Shao X H, Yuan S C, et al. Materials Science and Engineering[J], 2019, 744: 716
    [20] Wang B J, Xu D K, Wang S D, et al. International Journal of Fatigue[J], 2019, 120: 46
    [21] Meng Y X, Gao H, Hu J Q, et al. Journal of Materials Research [J], 2019, 34(6): 1054
    [22] Xu D K, Liu L, Xu Y B, et al. Scripta Materialia[J], 2007, 57(3): 285
    [23] Nicolas A, Co N E C, Engineering Fracture Mechanics[J], 2019, 220: 106661
    [24] Hochhalter J D, Littlewood D J, Christ Jr R J, et al. Modelling and Simulation in Materials Science and Engineering[J], 2010, 18(4): 045004
    [25] Raman R K S, Jafari S, Harandi S E. Engineering fracture mechanics[J],2015,137:97
    [26] Culbertson D, Jiang Y Y. Materials Science and Engineering: A[J], 2016, A676: 10
    [27] Shen Z, Zhao M, Zhou X Z, et al. Acta Biomaterialia[J], 2019: 671-680.
    [28] Chen R, Xu J Y, Zhang D F, et al. Rare Metal Materials and Engineering[J], 2019,48(07):2084
    [29] Wei L Y, Li J Y, Zhang Y, et al. Materials Chemistry and Physics[J], 2020, 241: 122441
    [30] Zhang X B, Yuan G Y, Mao L, et al. Materials Letters[J], 2012, 66(1): 209-211.
    [31] Celikin M, Kaya A A, Pekguleryuz M. Materials Science and Engineering: A[J], 2012, 534: 129
    [32] Somekawa H, Basha D A, Singh A. Materials Science and Engineering: A[J], 2018, 730: 355
    [33] Khan S A, Miyashita Y, Mutoh Y, et al. Materials Science and Engineering: A[J], 2006, 420(1-2): 315
    [34] Simanjuntak S, Cavanaugh M K, Gandel D S et al. Corrosion[J], 2014, 71(2): 199
    [35] Gandel D S, Easton M A, Gibson M A, et al. Materials Chemistry and Physics[J], 2014, 143(3): 1082
    [36] Wei L Y, Li J Y, Zhang Y, et al. Materials Chemistry and Physics[J], 2020, 241: 122441
    [37] Liu D X, Yang D L, Li X L, et al. Journal of Materials Research and Technology[J], 2019, 8(1): 1538
    [38] Jin S, Zhang D, Lu X P, et al. Journal of Materials Science & Technology[J], 2020,47:190
    [39] Wu G H, Fan Y, Zhai C Q, et al. Acta Metallurgica Sinica, 2008, 44(10): 1247
    [40] Luo Y F, Deng Y L, Guan L Q, et al. Materials & Design[J], 2020, 186: 108289
    [41] Munir K, Lin J X, Wen C E, et al. Acta Biomaterialia[J], 2019
    [42] Rad H R B, Idris M H, Kadir M R A, et al. Materials & Design[J], 2012, 33: 88
    [43] Li J X, Zhang Y, Li J Y. Rare Metal Materials and Engineering[J], 2019, 48(2): 463
    [44] Yang Y W, He C X, E D Y, et al. Materials & Design[J], 2019: 108259
    [45] Cheng W L, Ma S C, Bai Y, et al. Journal of Alloys and Compounds[J], 2018, 731: 945
    [46] Ibrahim H, Klarner A D, Poorganji B, et al. Journal of the Mechanical Behavior of Biomedical Materials[J], 2017, 69: 203
    [47] Liu J H, Song YW, Shan D Y, et al. Acta Metallurgica Sinica, 2018, 54(8): 114
    (刘金辉,宋影伟,单大勇等. 金属学报[J], 2018, 54(8): 114)
    [48] Ye H, Sun X, Liu Y, et al. Surface and Coatings Technology[J], 2019, 372: 288
    [49] Liu J, Yang L X, Zhang C Y, et al. Journal of Alloys and Compounds[J], 2019, 782: 648
    [50] Chen G, Fu Y J, Cui Y, et al. International Journal of Fatigue[J], 2019, 127: 461
    [51] He B L, Xie X T, Ding J H, et al. Rare Metal Materials and Engineering[J], 2019, 48(2): 650
    [52] Xi T F, Wei L N, Liu J, et al. Acta Metallurgica Sinica, 2017, 53(10): 1153
    (奚廷斐, 魏利娜, 刘婧等. 金属学报[J], 2017, 53(10): 1153)
    [53] Lin Y S, Cai S, Jiang S, et al. Journal of the Mechanical Behavior of Biomedical Materials[J], 2019, 90: 547
    [54] Prabhu D B, Gopalakrishnan P, Ravi K R. Journal of Alloys and Compounds[J], 2020, 812: 152146
    [55] Ding Z Y, Cui L Y, Chen X B, et al. Journal of Alloys and Compounds[J], 2018,764: 250
    [56] Uematsu Y, Kakiuchi T, Teratani T, et al. Surface and Coatings Technology[J], 2011, 205(8-9): 2778
    [57] Peron M, Torgersen J, Berto F. Procedia Structural Integrity[J], 2019, 18: 538
    [58] Rozali S, Mutoh Y, Nagata K. Materials Science and Engineering:A[J], 2011, 528(6): 2509
    [59] Zeng R C, Han L Y, Ke W, et al. Acta Metallurgica Sinica, 2005, 19: 1
    (曾荣昌,崔蓝月,柯伟. 金属学报, 2005, 19: 1)
    [60] Maltseva A, Shkirskiy V, Lefèvre G, et al. Corrosion Science[J], 2019, 153: 272
    [61] Bhuiyan M S, Mutoh Y, Murai T, et al. International Journal of Fatigue[J], 2008, 30(10-11): 1756
    [62] Khan S A, Bhuiyan M S, Miyashita Y, et al. Materials Science and Engineering A[J], 2011, 528: 1961
    [63] Jamesh M I, Wu G, Zhao Y, et al. Corrosion Science[J], 2015, 91: 160
    [64] Chamos A N, Pantelakis S G, Spiliadis V. Materials & Design[J], 2010, 31(9): 4130
    [65] Jamesh M, Kumar S, Narayanan T S N S. Corrosion Science[J], 2011, 53(2): 645
    [66] Liu M, Wang J, Zhu S, et al. Journal of Magnesium and Alloys[J], 2020, 8(1): 231
    [67] Sajuri Z B, Miyashita Y, Hosokai Y, et al. International Journal of Mechanical Sciences[J]. 2006. 48(2): 198
    [68] Harandi S E, Raman R K S. Engineering Fracture Mechanics[J], 2017, 186
    [69] Tokaji K, Kamakura M, Ishiizumi Y, et al. International Journal of Fatigue[J], 2004, 26(11): 1217
    [70] Jiang P L, Blawert C, Hou R Q, et al. Materials & Design[J], 2020, 59:107
    [71] Ghorbanpour S, McWilliams B A, Knezevic M. Fatigue & Fracture of Engineering Materials & Structures[J], 2019, 42(6): 1357
    [72] Jafari S, Raman R K S, Davies C H J, et al. Journal of the Mechanical Behavior of Biomedical Materials[J], 2017, 65: 634
    [73] Peng L M, Fu P H, Li Z M, et al. Materials Science and Engineering: A[J], 2014, 611: 170
    [74] Fatemi A, Socie D F. Fatigue & Fracture of Engineering Materials & Structures[J], 1988, 11(3): 149
    [75] Yu Q, Zhang J X, Jiang Y Y, et al. International Journal of Fatigue[J], 2011, 33(3): 437
    [76] Karparvarfard S M H, Shaha S K, Behravesh S B, et al. International Journal of Fatigue[J], 2019, 118: 282
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Liansheng Chen, Yaqi Zheng, Jingyuan Li, Yuan Zhang, Yun Liu, Yaqiang Tian, Xiaoping Zheng. Research Progress on Corrosion Fatigue Behavior of Novel Biomedical Degradable Magnesium-Based Alloys[J]. Rare Metal Materials and Engineering,2021,50(9):3375~3387.]
DOI:10.12442/j. issn.1002-185X.20200716

Copy
Article Metrics
  • Abstract:719
  • PDF: 1370
  • HTML: 167
  • Cited by: 0
History
  • Received:September 16,2020
  • Revised:October 27,2020
  • Adopted:November 25,2020
  • Online: September 27,2021
  • Published: September 24,2021