+Advanced Search
Oxidation Behaviors of a Zr-Sn-Nb Alloy in 1000~1250℃ Steam
Author:
Affiliation:

1.School of Materials Science and Engineering,Northwestern Polytechnical University,Xi’an;2.Science and Technology on Reactor Fuel and Materials Laboratory,Nuclear Power Institute of China

Clc Number:

TG172.5

Fund Project:

Natural Science Foundation of China (No. 51572224 and No.11704360), Research Foundation of Science and Technology on Safety and Reliability of Pyrotechnical Laboratory (No. WDYX19614260201)

  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    During loss of coolant accident, the oxidation can cause burst of the cladding tube in high temperature steam, which lead to the leakage of the nuclear fuel. At present work, the oxidation behaviors of a Zr-Sn-Nb alloy were investigated in 1000~1250℃ steam. The weight gains per area were calculated by the weight gain method. The microscopic morphology, thickness of the alloy were measured by a scanning electron microscope. The oxidation kinetics of the alloy was characterized by weight gain and the thickness increase of α-Zr (O) and ZrO2 layers. The results show that the parabolic weight gain curves and ZrO2 layer growth kinetics curves become to be linear in 1000℃ steam for about 1500s, while α-Zr (O) growth kinetics always follow the parabolic law. Meanwhile, a large number of cracks are formed in the ZrO2 layers. The weight gain kinetics curves and α-Zr (O) and ZrO2 layers growth kinetics curves all follow the parabolic law in 1100~1250℃ steam,and the ZrO2 layer is almost intact. The oxidation resistance of Zr-Sn-Nb alloy is higher than that of Zr-4 alloy. The growth rate of ZrO2 layer and α-Zr (O) layer is slower than that of Zr-4 alloy.

    Reference
    [1] Zhou Mingsheng(周明胜), Tian Minbo(田民波), Dai Xingjian(戴兴建). Nuclear materials and applications(核材料与应用)[M]. Beijing: Tsinghua University Press, 2017:105
    [2] Urbanic V F, Heidrick T R. J. Nucl. Mater[J], 1978, 75(2):251
    [3] Baker L, Just L C. Studies of metal-water reactions at high temperatures: Ⅲ. experimental and theoretical studies of the zirconium-water reaction[R]. American: Argonne National Laboratory, 1962
    [4] Cathcart J V, Pawel R E. Zirconium metal-water oxidation kinetics: Ⅳ. Reaction Rate Studies[R]. American: ORNL/NUREG-17,1977
    [5] Leistikow S, Schanz G. Mater. Corros[J], 1985, 36(3):105
    [6] Motta A T, Couet A, Comstock R J. Ann. Rev. Mater. Res[J], 2015, 45: 311
    [7] Mardon J P, Charquet D, Senevat J. Development of new zirconium alloys for PWR fuel rod cladding[A]. In Proceedings of International Conference on Light Water Reactor Fuel Performance[C]. La Grange Park: ANS, 1994:49
    [8] Mitchell D, Garde A, Davis D. Optimized ZIRLO fuel performance in Westinghouse PWRs[A]. In Proceedings of International Conference on Light Water Reactor Fuel Performance[C]. La Grange Park: ANS, 2010:14
    [9] Yoshino A, Ono S, Kido T, et al. Irradiation behavior of J-AlloyTM at high burnup[A]. In Proceedings of International Conference on Light Water Reactor Fuel Performance[C], La Grange Park: ANS, 2014:153
    [10] Pan G, Long C J, Garde A M, et al. Advanced material for PWR application: AXIOM cladding[A]. In Proceedings of International Conference on Light Water Reactor Fuel Performance[C]. La Grange Park: ANS, 2010: 74
    [11] Li Qiang(李强), Huang Changjun(黄昌军), Liang Xue(梁雪), et al. Corrosion Protection(腐蚀与防护)[J], 2013(08):4
    [12] Zhang Xin(张欣), Yao Meiyi(姚美意), Li Shilu(李士炉), et al. Acta Metallurgica Sinica(金属学报)[J], 2011(09):16
    [13] Sun Chao(孙超), Tan Jun(谭军), Ying Shihao(应诗浩), et al. Acta Metallurgica Sinica(金属学报)[J], 2010(07):39
    [14] Lian Shanshan(连姗姗), Tan Jun(谭军), Feng Keqin(冯可芹), et al. Journal of Mechanical Strength[J], 2010, 032(002):228
    [15] Bao Chen(包陈), Cai Lixun(蔡力勋), Tan Jun(谭军), et al. Atomic Energy Science and Technology(原子能科学技术)[J], 2010, 43(2):151
    [16]Li Qiang(李强), Liang Xue(梁雪), Zhou Bangxin(周邦新), et al. Rare Metal Materials and Engineering(稀有金属材料与工程) [J],2012,41(1):92
    [17] Baek J H, Jeong Y H. J. Nucl. Mater[J], 2007, 361:30
    [18] Yan Y, Garrison B E, Howell M, et al. J. Nucl. Mater[J], 2017: S0022311517311157
    [19] Nagase F, Chuto T, Fuketa T. J. Nucl. Sci. Technol[J], 2009, 46(7):763
    [20] Suparna B, Tapan K S, Alur V D, et al. J. Nucl. Mater[J], 2013, 439:258
    [21] Qiu Jun(邱军), Zhao Wenjin(赵文金), Thomas G, et al. Acta Metallurgica Sinica(金属学报)[J], 2011, 47(9):1216
    [22] Liu Yazhang(刘彦章), Qiu Jun(邱军), Liu Xin(刘欣), et al. Nuclear Power Engineering(核动力工程), 2010(02):89
    [23]Yang Zhongbo(杨忠波). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2018, 47(3):794
    [24] Grosse M. Nucl. Technol[J], 2010, 170(1):272
    [25] Narukawa T, Amaya M. J. Nucl. Sci. Technol[J], 2019, 56(7):650.
    [26] Wang Xiaomin(王晓敏). Nuclear fuel and materials research progress: 1992~2012(核燃料及材料研究进展: 1992~2012)[M]. Sichuan: Sichuan University Press, 2012:56
    [27] Sawarn T K, Banerjee S, Samanta A, et al. J. Nucl. Mater[J], 2015, 467:820
    [28] Lin Zhenhan(林振汉), Lin Gang(林钢), Wu Liang(吴亮), et al. Rare Metals(稀有金属)[J], 2003(1):49
    [29] Li Tiefan(李铁藩). High temperature oxidation and thermal corrosion of metal(金属高温氧化和热腐蚀)[M]. Beijing: Chemical Industry Press, 2003:61
    [30] Chen Heming(陈鹤鸣), Ma Chunlai(马春来). Nuclear reactor material corrosion and protection(核反应堆材料腐蚀及其防护)[M]. Beijing: Atomic Energy Press, 1984:188
    [31] Yao Meiyi(姚美意). Thesis for Master(硕士论文)[D]. Shanghai: Shanghai University, 2007
    Related
    Cited by
Get Citation

[ZHANG Feng, ZHANG Chengyu, ZHAO Wanqian, ZHANG Yao, CHEN Le, LI Mei, SONG Pengcheng. Oxidation Behaviors of a Zr-Sn-Nb Alloy in 1000~1250℃ Steam[J]. Rare Metal Materials and Engineering,2021,50(10):3677~3683.]
DOI:10.12442/j. issn.1002-185X.20200794

Copy
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 14,2020
  • Revised:November 09,2020
  • Adopted:November 25,2020
  • Online: October 28,2021
  • Published: October 25,2021