+Advanced Search
Microstructure evolution characteristics of industrial electrolytic nickel deposits
Affiliation:

Lanzhou University of Technology

Fund Project:

A project funded by the State Key Laboratory of Comprehensive Utilization of Nickel and Cobalt Resources

  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    This paper studies the characteristics of the microstructure of industrial electrolytic nickel deposits changing with deposition time. XRD, SEM, EBSD and other analysis methods were used to study the preferred orientation, microstructure and characteristic grain boundary distribution of electrolytic nickel plate with the production time were studied. The results show that the crystals on the surface of the electrodeposited nickel plate mainly grow in the direction perpendicular to the (200) plane, the cross-section shows the (111) and (200) double preferred orientations, and the crystal growth method is lateral growth. The surface and the cross-section show different microstructure, the surface morphology changes from a pyramid shape to a cell shape,and the growth mechanism changes from spiral dislocation-driven growth to atom aggregation and accumulation,the cross-sectional morphology of the nickel plate is always a lamellar structure at each stage. The cross-section of the deposited layer is mainly high-angle grain boundaries and a large number of Σ3 twin grain boundaries. In the stable growth process, the proportion of large-angle grain boundaries gradually decreases as the deposition progresses, neverthless the relative frequency of Σ3 grain boundaries gradually increases, but they will all be affected by changes in the environment of the electrolytic cell. In the cross-section along the growth direction, the electrolytic nickel plate mainly shous the fiber texture of <001> direction, and a large number of Σ3 twin boundaries affect the orientation of the deposited layer.

    Reference
    [1] Sreenu B., Sarkar Rajdeep, Kumar S.S. Satheesh, et al. Materials Science Engineering A[J]. 2020, 797: 140254.
    [2] Zhao X S, Jiang L, Ma C H, et al. Journal of Power Sources[J]. 2021, 490:229534.
    [3] Zhu H X, Fu K K, Yang B, et al. Composites Science and Technology[J]. 2021, 207: 108675.
    [4] 夏天东, 张晓宇, 徐仰涛, 等. 中国有色金属学报[J]. 2015, 25(011):3133-3140.
    [5] Alimadadi H, Bastos Fanta A, Somers M A J, et al. Applied Physics Letters[J]. 2013, 103(3): 031918-031918-4.
    [6] 师瑀, 张莹莹, 刘峰, 等. 热加工工艺[J]., 2020, 49(16): 32-36.
    [7] 卢磊, 卢柯. 金属学报[J]. 2010, 46(11): 1422-1427.
    [8] K Tamás, J Péter, P László, et al. Surface Coatings Technology[J]. 2018, 349: 611-621.
    [9] Bi X L, Zeng Y B, Qu N S. Precision Engineering[J]. 2020, 61:14-22.
    [10] 乔俊强, 虎学梅. 材料保护[J]. 材料保护, 2018, 51(09):59-65.
    [11] Xu Y. T, Huang K, Zhu Z. X, et al. Surface coatings technology[J]. 2019, 370: 1-10.
    [12] 周绍民. 金属电沉积-原理与研究方法[M]. 上海: 上海科学技术出版社,1987: 254-258.
    [13] P. Sibley, P.A. Brook. Electrodeposition Surface Treatments[J]. 1974, 2(3): 177-190.
    [14] Anette A. Rasmussen, Jens A.D. Jensen, Andy Horsewell, et al. Electrochimica Acta[J]. 2001, 47(1): 67-74.
    [15] Rasmussen A A, Mller P, Somers M. Surface and Coatings Technology[J]. 2006, 200(20):6037-6046.
    [16] 张建民, 徐可为. 物理学报[J]. 2002(11): 153-157.
    [17] Shibata A, Noda H, Sone M, et al. Thin Solid Films[J]. 2010, 518(18): 5153-5158.
    [18] Lee J. M, Jung K. K, Ko J. S. Current Applied Physics[J]. 2016, 16(3): 261-266.
    [19] 渡边辙. 纳米电镀[M]. 北京: 化学工业出版社, 2007: 74-81.
    [20] Bund A, Thiemig D. Surface and Coatings Technology[J]. 2007, 201(16-17): 7092-7099.
    [21] 王恩哥. 薄膜生长中的表面动力学问题[M]. 北京: 科学出版社, 2002: 52-54.
    [22] Bozzini B, Lacitignola D, Mele C, et al. Note Di Matematical[J]. 2012, 32(1): 7-46.
    [23] 单海权, 张跃飞, 毛圣成, 等. 金属学报[J]., 2014, 50(03): 305-312.
    [24] 曹圣泉, 张津徐, 吴建生, 等. 金属学报[J]. 2004, 40(10): 1045-1050.
    [25] Maharana H S, Bishoyi B, Basu A. Journal of Alloys and Compounds[J]. 2019, 787: 483-494.
    [26] Zangari G. Encyclopedia of Interfacial Chemistry[J]. 2018: 141-160.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Xuyangtao, Wangchao, Liuzhijian, Lujianbo, Suyujuan. Microstructure evolution characteristics of industrial electrolytic nickel deposits[J]. Rare Metal Materials and Engineering,2022,51(4):1462~1469.]
DOI:10.12442/j. issn.1002-185X.20210335

Copy
Article Metrics
  • Abstract:443
  • PDF: 933
  • HTML: 119
  • Cited by: 0
History
  • Received:April 16,2021
  • Revised:May 23,2021
  • Adopted:June 22,2021
  • Online: May 05,2022
  • Published: April 28,2022