+Advanced Search
Microstructure and Corrosion Resistance of AlCoCrFeNiSix High-entropy Alloy Coating by Laser Cladding
Author:
Affiliation:

1.China University of Mining and Technology,School of Mechanical and Electrical Engineering;2.China University of Mining and Technology, Jiangsu Collaborative Innovation Center of Intelligent Mining Equipment

Clc Number:

TG174;TN249

Fund Project:

National Natural Science Foundation of China(Grant No. 51905534)、Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

  • Article
  • | |
  • Metrics
  • |
  • Reference [35]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    AlCoCrFeNiSix(x=0.1,0.2,0.3,0.4,0.5) high-entropy alloy coatings were prepared on the surface of AISI 304 stainless steel. The effect of Si element on the microstructure and properties of the high-entropy alloy was investigated using X-ray diffractometer (XRD), scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS), transmission electron microscope (TEM), Vickers hardness tester, and electrochemical workstation. The results show that the high-entropy alloy coatings consist of solid-solution grains with body-centered cubic (BCC) lattice. With the increase of the Si element content, the substitutional solid solution of Si element causes the crystal lattice to shrink, and the crystal grains are gradually refined. Besides, the AlNi phase with nano-scale spherical shape is dissolved in the crystal grains, and a small amount of Cr23C6 carbides are precipitated along the grain boundaries. The evolution of the microstructure leads to an increase in the microhardness of the coating, with the maximum hardness reaching 848.1 HV0.3. The thermodynamic corrosion tendency and uniform corrosion rate of AlCoCrFeNiSix high-entropy alloy coating are lower than the AISI 304 stainless steel. The doping of Si element improves the repair ability and stability of the passivation film, and promotes the corrosion mechanism to transform from pitting corrosion developed by autocatalysis to intergranular corrosion.

    Reference
    [1]Cantor B, Chang I T H, Knight P, et al. Materials Science and Engineering[J],2004, 375–377:213-218.
    [2]Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials[J], 2004, 6(5): 299-303.
    [3]Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science[J], 2014, 61:1-93.
    [4]Huang Liufei(黄留飞), Sun Yaoning (孙耀宁), Ji Yaqi(季亚奇), et al. Chinese Journal of Lasers(中国激光)[J], 2021, 48(6): 0602107.
    [5]Cai Z B, Cui X F, Liu Z, et al. Optical and Laser Technology[J], 2017, 99, 276-281.
    [6]Shu F Y, Liu S, Zhao H Y, et al. Journal of Alloy and Compound[J], 2018, 731, 662-666.
    [7]Qiu X W, Wu M J, Liu C G, et al. Journal of Alloy and Compound[J], 2017,708, 353-357.
    [8]Huang Liufei(黄留飞), Sun Yaoning(孙耀宁), Wang Guojian (王国建).Laser Optoelectronics Progress(激光与光电子学进展)[J], 2019, 56(24): 240003
    [9]Liu H, Gao W P, Liu J, et al. Journal of Materials Engineering and Performance[J], 2020, 29(11): 7170-7178.
    [10]Tasi KY, Tsai M H, Yeh J W. Acta Materialia[J], 2013, 61(13): 4887-4897.
    [11]Wang F J, Zhang Y, Chen G L, et al. Journal of Engineering Materials and Technology-Transactions of the Asme[J],2009, 131(3): 034501
    [12]Kunce I, Polanski M, Karczewski K, et al. Journal of Alloys and Compounds[J], 2015, 648: 751-758.
    [13]Zhang S, Wu C L, Zhang C H, et al. Optics Laser Technology[J], 2016, 84: 23-31.
    [14]Jiang Y Q, Li J, Juan Y F, et al. Journal of Alloys and Compounds[J], 2019, 775: 1-14.
    [15]Liu H, Liu J, Chen P J, et al. Optics and Laser Technology[J], 2019, 118:140-150.
    [16]Juan Y F, Li J, Jiang Y Q, et al. Applied Surface Science[J], 2019, 465: 700-714.
    [17]Li M, Gazquez J, Borisevich A, et al. Intermetallics[J], 2018, 95:110-118
    [18]Chen Guojin(陈国进), Zhang Chong(张冲), Tang Qunhua (唐群华), et al. Rare metal materials and Engineering(稀有金属材料与工程)[J], 2015, 44(6): 1418-1422.
    [19]Hao Wenjun(郝文俊), Sun Ronglu(孙荣禄), Niu Wei(牛伟), et al.Surface Technology(表面技术)[J], 2021,50(05):87-94.
    [20]Zhang H, Pan Y, He YZ. Materials and Design[J], 2011, 32(4): 1910-1915.
    [21]Wu Bingqian(吴炳乾), Rao Huchang(饶湖常), Zhang Chong(张冲), et al. Surface Technology(表面技术)[J], 2015,44(12): 85-91.
    [22]Zheng S, Li J W, Zhang J J, et al. Journal of Non-crystalline Solids[J], 2018, 493: 33-40.
    [23]Liu H X, Huang F, Yuan W, et al. Corrosion Science[J], 2020, 173: 108758.
    [24]Liu H, Chen P J, Yang H F, et al. Journal of Spectroscopy[J], 2019,2019: 1-15.
    [25]Zhang Hui(张晖), Pan Ye(潘冶), He Yizhu(何宜柱). Acta Metallurgica Sinica(金属学报)[J], 2011, 47(8): 1075-1079.
    [26]Zhang Y, Zhang X. Materials Chemistry and Physics[J], 2012, 132(2-3): 233-238.
    [27]Li Jianguo(李建国), Sun Xueying(孙雪迎), Cha Guoji(茶国吉), et al. Light Alloy Fabrication Technology(轻合金加工技术)[J], 2011, 39(11): 21-26.
    [28]Ibrahim M K, Hussenin A H, Abdelkawy M. Transaction of Nonferrous Metals Society of China[J],2013, 23(7): 1863-1874.
    [29]Tan X d, Xu Y B, Yang X L, et al. Materials Science and Engineering[J], 2014, 589: 101-111.
    [30]Xin S W, Zhang M, Yang T T, et al. Journal of Alloys Compounds[J], 2018, 769: 597-604.
    [31]Li Liqun(李俐群), Shen Faming(申发明), Zhou Yuandong(周远东), et al. Chinese Journal of Lasers(中国激光)[J], 2019,46(10):1002010
    [32]Zhang G Z, Liu H, Tian X H, et al. Journal of Materials Engineering Performance[J], 2020(29): 278-288.
    [33]Xu Jintao(徐金涛), Li An(李安), Liu Dong(刘栋), et al. Chinese Journal of Lasers(中国激光)[J], 2016, 43(3): 3003006
    [34]Liu J, Liu H, Chen P J, et al. Surface Coatings Technology[J], 2019, 361:63-74.
    [35]Yuan L, Wang H M. Electrochimica Acta[J], 2008, 54(2): 421-429.
    Cited by
Get Citation

[Liu Hao, Gao Qiang, Hao Jingbin, Zhang Guozhong, Hu Yuan, Yang Haifeng. Microstructure and Corrosion Resistance of AlCoCrFeNiSix High-entropy Alloy Coating by Laser Cladding[J]. Rare Metal Materials and Engineering,2022,51(6):2199~2208.]
DOI:10.12442/j. issn.1002-185X.20210484

Copy
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 02,2021
  • Revised:July 27,2021
  • Adopted:August 06,2021
  • Online: July 06,2022
  • Published: June 29,2022