+Advanced Search
In-situ electrochemical study on susceptibility to stress corrosion cracking of new-developed 1200 MPa Ti-35421 titanium alloy
Author:
Affiliation:

College of Materials Science and Engineering&Tech Institute for Advanced Materials,Nanjing Tech University

  • Article
  • | |
  • Metrics
  • |
  • Reference [27]
  • |
  • Related [6]
  • | | |
  • Comments
    Abstract:

    The effects of different strain rates and cathodic protection potential on the stress corrosion cracking (SCC) behavior of new-developed 1200 MPa Ti-35421 (Ti-3Al-5Mo-4Cr-2Zr-1Fe) alloy have been investigated by using slow strain rate test combined with in-situ electrochemical monitoring. The results indicate that Ti-35421 alloy has the highest SCC susceptibility in 3.5% NaCl solution at the strain rate of 1.67×10-5 mm s-1. The plastic loss and stress corrosion index of Ti-35421 alloy are confirmed to be 27.27% and 0.273, respectively. The passivating ability of the passivation films in the crack tips is considered to be weaker than active dissolution under the combined interaction of applied stress and corrosive media especially with strain rate of 1.67×10-5 mm s-1, which results in the intensification of SCC. When the cathodic protection potential is set at -600 mV, the SCC susceptibility of Ti-35421 alloy in 3.5% NaCl solution is the lowest. The range of the optimal cathodic protection potential is measured to be from -450 to -600 mV. The reduction of the plastic loss and stress corrosion index of Ti-35421 alloy down to 1.01% and 0.113 is ascribed to the slower conjugated anodic reaction kinetics under the cathodic protection.

    Reference
    [1] Song Dejun(宋德军), Niu Long(牛龙), Yang ShengLi(杨胜利). Rare Metal Materials and Engineering(稀有金属材料与工程) [J], 2020, 49(3): 1100
    [2] Keist J S, Palmer T A. Materials Science and Engineering: A[J], 2017, 693: 214
    [3] Wang D C. The Chinese Journal of Nonferrous Metals[J], 2010, 20(s1): s958
    [4] Chang Hui(常辉), Zeng Weidong(曾卫东), Luo Yuanyuan(罗媛媛) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2006,35(10): 1589
    [5] Zhou D Y, Gao H,Guo Y H et al. Materials[J]. 2020, 13(16): 3623
    [6] Pirvu C, Demetrescu I, Drob P et al. Materials and Corrosion[J], 2015, 62(10): 948
    [7] Chu Hong(褚洪). Chinese Journal of Engineering(工程科学学报)[J], 2002, 24(1): 47
    [8] Tiyyagura H R, Kumari S, Mohan M K et al. Journal of Alloys and Compounds[J], 2019, 775(15): 518
    [9] Liu Y, Tang S, Liu G et al. International Journall of Electrochemical Science[J], 2016, 11(12): 10561.
    [10] Chu W Y, Qiao L J, Gao K W. Chinese Science Bulletin[J], 2001, 46:717
    [11] Zhang X G, Vereecken J. Corrosion[J],1990, 46(2): 136
    [12] Henthorne M. Corrosion[J], 2016, 72(12): 1488
    [13] Wang Zhiying(王志英), Wang Jianqiu(王俭秋), Han Enhou(韩恩厚) et al. Acta Metallurgica Sinica(金属学报)[J], 2012, 48(10): 1267
    [14] Zhang Baohong(张宝宏), CongWenbo(丛文博), Yang Ping(杨萍). Electrochemical corrosion and protection of metals(金属电化学腐蚀与防护)[M]. Beijing: Chemical Industry Press, 2016
    [15] Xu H, Xia X M, Hua L et al. Engineering Failure Analysis[J], 2012, 19: 43
    [16] Reng Chengqiang(任呈强),Zhao Yuangxing(赵远兴),Liu Li(刘丽). Materials Review(材料导报)[J], 2012, 26(12): 26
    [17] Liu Yuanyong(刘远勇), Zhang Xiaoyun(张晓云), Pei Hezhong(裴和中) et al. Journal of Materials Engineering[J], 2010, 0(2): 33
    [18] Ehtemam-Haghighi S, Liu Y J, Cao G H et al. Materials Science and Engineering: C[J], 2016, 60: 503
    [19] Liu Y, Tang S W, Liu G Y et al. International Journall of Electrochemical Science[J], 2016, 11(12): 10561
    [20] Christ H J, Decker M, Zeitler S. Metallurgical and Materials Transactions A[J], 2000, 31(6): 507
    [21] Cao S, Lim C V S, Hinton B et al. Corrosion Science[J], 2017, 116: 22
    [22] Wu Yinshun(吴荫顺). Metal corrosion method(金属腐蚀方法)[M]. Beijing: Metallurgical Industry Press, 1993
    [23] Leng Wengbing(冷文兵), Yuan Gecheng(袁鸽成), Lu Haodong(路浩东). Corrosion and Protection(腐蚀与防护)[J], 2009, 11(30): 793
    [24] Long Dongping(龙东平), Xue Jianrong(薛建荣), Yan Zzhixin(晏智鑫). Surface Technology(表面技术)[J], 2015, 44(6): 115
    [25] Cheng Yuan(程远), Yu Hongying(俞宏英), Wang Ying(王莹) et al. Journal of Materials Engineering(材料工程)[J], 2013, 0(3): 77
    [26] Woodtli J, Kieselbach R. Engineering Failure Analysis[J], 2020, 7(6): 427
    [27] Zartsyn D I, Shugurov A E, Marshakov I K. Protection of Metals[J], 2001, 37: 138 (2001)
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Zeng Qiangqiang, Qu Jiahui, Dan Zhenhua, Chang Hui, Zhou Lian. In-situ electrochemical study on susceptibility to stress corrosion cracking of new-developed 1200 MPa Ti-35421 titanium alloy[J]. Rare Metal Materials and Engineering,2023,52(4):1321~1327.]
DOI:10.12442/j. issn.1002-185X.20220194

Copy
Article Metrics
  • Abstract:657
  • PDF: 1283
  • HTML: 79
  • Cited by: 0
History
  • Received:March 11,2022
  • Revised:March 30,2022
  • Adopted:April 26,2022
  • Online: May 01,2023
  • Published: April 25,2023