+Advanced Search
Interfacial Microstructure and Bonding Property of Cu/Al Bimetallic Composite Rod Fabricated by Equal Channel Angular Pressing (ECAP) and Post-annealing
Author:
Affiliation:

School of Mechanical and Electrical Engineering,Xuzhou University of Technology

  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Cu/Al bimetallic composite rod was successfully fabricated by 4 passes ECAP at room temperature and post-annealing. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) were used to investigate the microstructure of the bonding interface of Cu/Al bimetallic composite rod, and the interfacial bonding strength was also tested by shear test. The results show that under the severe shear deformation during ECAP process, mechanical bonding occurred firstly at the interface of the Cu/Al bimetallic composite rod through plastic deformation, and then the mutual diffusion between copper and aluminum atoms were promoted during the post-annealing. Under the combined effects of large pressure, high temperature and concentration gradient, a good metallurgical bonding at the interface of the Cu/Al bimetallic composite rod was formed. The thickness of Cu/Al interface layer was about 1.47 μm and a new phase of intermetallic compound CuAl2 was generated, consisting of ultrafine grained (UFG) microstructures with high angle grain boundaries and homogeneous distribution, and there was no obvious preferred grain orientation. The average shear strength of Cu/Al bimetallic composite rod was 28.94 MPa, showing the good interface bonding quality. Moreover, the main shear failure mode was brittle fracture.

    Reference
    [1] Liu Guoping(刘国平), Wang Qudong(王渠东), Jiang Haiyan(蒋海燕). Materials Reports(材料导报)[J], 2020, 34(4): 07115.
    [2] Liu Shuaiyang(刘帅洋),Wang Aiqin(王爱琴), Lv Shijing(吕世敬) et al. Materials Reports A: Overview(材料导报A:综述篇)[J], 2018, 32(3): 828.
    [3] Liu Guoping, Wang Qudong, Zhang Li et al. Metallurgical and Materials Transactions A[J], 2019, 50(1), 401.
    [4] Liu Ning, Jie Jinchuan, Lu Yiping, et al. Journal of Materials Processing Technology[J], 2014, 214(1): 60.
    [5] Wang Yansong(王艳松), LI Wenya(李文亚), YANG Xiawei(杨夏玮), et al. Journal of Materials Engineering(材料工程)[J], 2016, 44(4): 119.
    [6] Harsha R N, Kulkarni V M, Babu B S. Materials Today: Proceedings[J[, 2018, 5(10): 22340.
    [7] Tolaminejad B, Hoseini-athar M M. Materials Science and Engineering: A[J], 2016, 18(670):146.
    [8] Mohammad A, Faramarz F-S. Transactions of Nonferrous Metals Society of China[J], 2016, 26(05): 1276.
    [9] Eivani A R, Taheri A K. Materials Letters[J], 2007, 61: 4110.
    [10] Li X B, Zu G Y, Wang P. Materials Science and Engineering:A[J], 2014, 612, 89.
    [11] Wu Yongfu(吴永福), Liu Xinhua(刘新华), Xie jianxin(谢建新).The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J], 2013, 23(1): 191.
    [12] Ren Guangxiao(任广笑), Wang Hongxia(王红霞), Zhou Bin(周斌) et al. Transactions of Materials and Heat Treatment(材料热处理学报)[J], 2016, 37(05):33.
    [13] Tolaminejada B, Taheri A K, Arabi H et al. Proceedings of Iran International Aluminum Conference (IIAC2009) [C],Iran: Tehran, I.R.Iran, 2009: 1.
    [14] Eslami P, Taheri A K. Material Letters[J], 2011, 65(12):1862.
    [15] Cheng Mingyang(程明阳), Wang Aiqin(王爱琴), Mao Zhiping(毛志平) et al. Journal of Henan University of Science and Technology( Natural Science) (河南科技大学学报(自然科学版) ) [J], 2017, 38(1): 10.
    [16] Eslami P, Taheri A K, Zebardast M. Journal of Materials Engineering Performance[J], 2013, 22(10): 3014.
    [17] Mao Zhiping, Xie Jingpei, WANG Aiqin et al. Metals[J], 2018, 8(645):1.
    [18] Zou Juntao, Gao Lei, Xie Tingfang et al. Rare Metal Materials and Engineering[J]. 2020, 29(12):412.
    [19] Amani H, Soltanieh M. Metallurgical and Materials Transactions B[J], 2016, 47(4): 2524.
    [20] Qiao Jisen(乔及森), Xiang Yangzhi(向阳芷), Nie Shucai(聂书才) et al. Journal of Materials Engineering(材料工程)[J], 2017, 45(11): 78.
    [21]Yu Qingbo(于庆波), Liu XiangHua(刘相华), Sun Ying(孙莹) et al. Scientia Sinica Technologica(中国科学:技术科学)[J], 2016, 46(11): 1166.
    [22] Chen Liansheng(陈连生), Zhang Xinlei(张鑫磊), Zhen Xiaoping(郑小平) et al. Rare Metal Materials and Engineering (稀有金属材料科学与工程)[J]. 2018, 47(10):3241.
    [23] Hao Pingjun, Wang Zhenhua, Liu Yuanming. Hot Working Technology[J], 2018,12(47):159
    [24] Rahdari M, Reihanian M, Lari baghal S M. Materials Science Engineering: A[J], 2018, 738: 98.
    [25] Xie Jingpei(谢敬佩), Liu Zhe(刘哲), Wang Aiqin(王爱琴) et al. Materials Reports(材料导报)[J], 2019,33(5):1702.
    [26] Liu Yazhou, Wang Wenyan, Huang Yabo et al. Special-cast and Non-ferrous Alloys(特种铸造及有色合金)[J], 2018,38(11):1230.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[WANG Xiaoxi, ZHANG Xiang, YUAN Junchi, Yin Zhiwei, Liang Tingyu. Interfacial Microstructure and Bonding Property of Cu/Al Bimetallic Composite Rod Fabricated by Equal Channel Angular Pressing (ECAP) and Post-annealing[J]. Rare Metal Materials and Engineering,2022,51(11):4130~4136.]
DOI:10.12442/j. issn.1002-185X.20220295

Copy
Article Metrics
  • Abstract:591
  • PDF: 1134
  • HTML: 123
  • Cited by: 0
History
  • Received:April 10,2022
  • Revised:May 11,2022
  • Adopted:May 23,2022
  • Online: December 02,2022
  • Published: November 30,2022