Abstract:Refractory metals are widely used in aerospace, equipment manufacturing, nuclear industry and biomedical fields due to their excellent comprehensive properties. However, due to the characteristics of high melting point and high ductile-brittle transition temperature, there are still some problems such as difficult manufacturing, long production cycle and high equipment requirements, which limit its application and development. Laser additive manufacturing (LMD) is one of the emerging digital manufacturing technologies in recent years, which provides a new development idea for manufacturing and processing refractory metals. In this paper, the hot fields of laser additive manufacturing for refractory metals in recent years were introduced, including tungsten and tungsten heavy alloys (WHAs), pure molybdenum and molybdenum-silicon-boron alloys (Mo-Si-B), niobium-silicon and niobium-titanium alloys and porous tantalum, and the existing problems were summarized. Finally, the future development direction of laser additive manufacturing for refractory metals was prospected.