Abstract:Currently, bonding the catalyst to the substrate by using adhesive is the mainstream way to prepare electrodes for hydrogen precipitation in electrolytic water, but the adhesive itself has high resistance and low bonding strength, and is easy to fall off. Metal Pt is currently recognized as the best metal electrode for hydrogen precipitation, but its expensive price limits the industrial use on a large scale. A self-supporting titanium-copper laminate electrode was constructed by combining titanium, which has low overpotential for gas precipitation, good stability and high strength, with copper, which has excellent electrical conductivity, through explosion welding technology. Electrochemical tests have shown that the laminated electrode exhibits good electrolytic hydrogen precipitation (HER) performance and conductivity and excellent stability in 1 mol/L KOH solution with a potential fluctuation of only 0.05 V at a current density of 10 mA-cm-2 and a stability test time of 20,000 s. The uneven and porous surface morphology produced during operation has been used to expose more of the electrodes. The experimental results of hydrogen precipitation measurement of electrolytic water can also verify the superior hydrogen precipitation performance of titanium-copper laminated electrodes in practice. The surface morphology exposed more active sites and electrochemically active surface area, so that the HER performance of the laminated electrode will not decrease and will be slightly improved during long-time operation, which provides an effective and cost-reducing direction for electrode material preparation and has a broad engineering application prospect.