+Advanced Search
Molecular dynamics simulation of tensile deformation behavior of monocrystalline Ni and its alloys with different stacking fault energies
Author:
Affiliation:

1.School of Material Science and Engineering,Lanzhou University of Technology;2.School of Mechanical Engineering,Lanzhou Petrochemical University of Vocational Technology

  • Article
  • | |
  • Metrics
  • |
  • Reference [50]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Molecular dynamics simulation was used to simulate the uniaxial tensile deformation of monocrystalline Ni and Ni57Cr19Co19Al5 alloy models with different cross-sectional sizes in the [100] orientation, the appropriate simulation modle size with stable plastic flow stress was determined. The tensile deformation behavior of monocrystalline Ni and its alloys of the same modle with stable flow stress were further studied. The results show that the monocrystalline Ni57Cr19Co19Al5 alloy with smaller modle sizes are likely to form multi-layer twins or deformation twins during the tensile process because of low stacking fault energy. As the cross-sectional side length of modle is greater than 30 times of lattice constant, the flow stress, phase structures and dislocation density in the plastic flow stage tend to be stable fluctuation with the variation of strain. When the monocrystalline Ni and Ni-based alloys with same modle of stable flow stress stage are stretched, the lower the stacking fault energy is, the larger the area of the stacking faults plane during plastic deformation. During the tensile process of monocrystalline Ni and Ni-based alloys, Shockley partials play a leading role in the plastic deformation process. The formation of multi-layer twins is accompanied by dislocation exhaustion, while the formation and annihilation of deformation twins are mainly dominated by the dislocation starvation mechanism.

    Reference
    [1] Guo Jianting (郭建亭). Materials Science and Engineering for Superalloys (Book 1)(高温合金材料学(上册))[M].Beijing: Science Press, 2008:3
    [2] Shang S L, Zacherl C L, Fang H Z, et al. Journal of Physics: Condensed Matter[J], 2012, 24: 505403
    [3] Dodaran Mohammad S, Guo Shengmin, Khonsari Michael M, et al Computational Materials Science[J], 2021, 191: 110326
    [4] Xie X S, Chen G L, Mchugh P J, et al. Scripta Metallurgica[J], 1982, 16(5):483
    [5] Yuan Yong, Gu Yuefeng, Cui Chuanyong, et al. Journal of Materials Research[J], 2011, 26(22): 2833
    [6] Beyerlein Irene J, Zhang Xinghang, Misra Amit. Annual Review of Materials Research[J], 2014, 44:329
    [7] Lu K, Lu L, Suresh S. Science[J], 2009, 324(5925): 349
    [8] Wang Xingmao, Ding Yutian, Gao Yubi, et al. Materials Science and Engineering[J], 2021, A823:141739
    [9] Gao Yubi, Ding Yutian, Chen Jianjun, et al. Materials Science and Engineering[J], 2019, A767: 138361
    [10] Sun LG, Wu G, Wang Q, et al. Materials Today[J], 2020, 38: 114
    [11] Zhang Yong(张勇), Li Xinxu(李鑫旭), Wei Kang(韦康), et al. Acta Metallurgica Sinica(金属学报)[J], 2020, 56(10): 1401
    [12] Gu Yuefeng(谷月峰), Cui Chuanyong(崔传勇), Yuan Yong(袁勇), et al. Acta Metallurgica Sinica(金属学报)[J], 2015,51(10): 1191
    [13] Chen Jianjun, Ding Yutian, Zhang Xia, et al. Vacuum[J], 2022, 203:111322
    [14] Wang Xingmao, Ding Yutian, Yu Hongyao, et al. Materials Science and Engineering, 2022, A847: 143293
    [15] Zhang Jianmin(张建民), Wu Xijun(吴喜军), Huang Yuhong(黄育红), et al. Acta Physica Sinica(物理学报)[J], 2006, 55(1): 393
    [16] Sun Hongliang, Chen Liuyan, Sun Sheng, et al. Science China Technological Sciences[J], 2018,61(5):687
    [17] Fang Qiongjiali, Sansoz Frederic. Acta Materialia[J], 2021, 212: 116925
    [18] Huang Qishan, Zhu Qi, Chen Yingbin, et al. Nature Communication[J], 2021, 12: 6695
    [19] Wu Ronghai, Zhao Yunsong, Yin Qian, et al. Journal of Alloys and Compdounds[J], 2021, 855: 157355
    [20] Gupta Ankit, Gruber Jacob, Rajaram Satish S, et al. npj Computational Materials[J], 2020, 6: 153
    [21] Wen Bin, Xu Bo, Wang Yanbin, et al. npj Computational Materials[J], 2019, 5: 117
    [22] Sainath G, Rohith P, Choudhary B K. Philosophical Magazine, 2017, 97(29): 2632
    [23] Cao Hui, Rui Zhiyuan, Yang Fuqian. Materials Science and Engineering[J], 2020, A791: 139644
    [24] Lu Xuefeng, Yang Panfeng, Luo Jianhua, et al. RSC Advances[J], 2019, 9: 25817.
    [25] Zheng(郑茂). Molecular Dynamics Simulation of Tensile Mechanical Properties and defect behavior of Metal-single crystal(金属单晶拉伸力学性能及缺陷行为的分子动力学模拟)[D]. Nanjing University of Science and Technology, 2007: 28.
    [26] Zhu Xu(朱旭), Jiang Wugui(江五贵), Li Yuancai(李源才),et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2021, 50(4): 1254.
    [27] Carter C B, Holmes S M. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics[J], 1977, 35(5): 1161
    [28] Kumar Kaushlendra, Sankarasubramanian R, Waghmare Umesh V. Computational Materials Science[J], 2018, 150: 424
    [29] Yu Xiaoxiang, Wang Chongyu. Acta Materialia[J], 2009, 57: 5914.
    [30] Plimpton Steve. Journal of Computational Physics[J], 1995, 117(1): 1
    [31] Farkas Diana, Caro Alfredo. Journal of Materials Research[J], 2018, 33: 3218
    [32] Farkas Diana, Caro Alfredo. Journal of Materials Research[J], 2020, 35: 3031
    [33] Evans D J, Holian B L. The Journal of Chemical Physics[J], 1985, 83: 4069
    [34] Fletcher R, Reevse C M. Computer Journal, 1964, 7: 149
    [35] Stukowski Alexander. Modelling and Simulation in Materials Science and Engineering[J], 2010, 18: 015012
    [36] Honeycutt J. Dana, Andersen Hans C. Journal of Physical Chemistry[J], 1987, 91: 4950
    [37] Stukowski Alexander, Bulatov Vasily V, Arsenlis Athanasios. Modelling and Simulation in Materials Science and Engineering[J], 2012, 20: 085007
    [38] Wang Congzeng(王从曾). Materials Properties(材料性能学)[M]. Beijing: Beijing University of Technology Press, 2007: 4
    [39] Tao Weiming, Huang Dan, Guo Yimu, et al. Journal of Zhejiang University(Engineering Science) (浙江大学学报(工学版))[J], 2005(08): 1265
    [40] Li Yuancai(李源才), Jiang Wugui(江五贵), Zhou Yu(周宇). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2020, 49(7): 2372
    [41] Hu Gengxiang(胡赓祥), Cai Xun(蔡洵), Rong Yonghua(戎咏华). Fundamentals of Materials Science (Third Edition)(材料科学基础(第三版))[M]. Shanghai Jiao Tong University Press, 2010.
    [42] Korchuganov Aleksandr V, Zolnikov Konstantin P, Skryzhevich Dmitrij S. Materials Letters[J], 2019, 252: 194
    [43] Hahn Eric N, Meyers Meyers A. Materials Science and Engineering[J], 2015, A646: 101
    [44] Zhao Shijun, Osetsky Yuri, Stocks G. Malcolm, et al. npj Computational Materials[J], 2019, 5: 13
    [45] Hull D, Bacon D J. Introduction to dislocations (Fifth Edition)[M] Elsevier Ltd, 2011
    [46] Ma Yuanjun, Ding Yutian, Gao Yubi, et al. Metals and Materials International[J], 2022, https://doi.org/10.1007/s12540-022-01297-3
    [47] EI-Awady Jaafar A. Nature Communication[J], 2015, 6: 5926
    [48] Wang Yanan(王亚男), Chen Shujiang(陈树江), Dong Xichun(董希淳).Dislocation Theory and Its Applications(位错理论及其应用)[M]. Beijing: Metallurgical Industry Press, 2007:89
    [49] Jamaati Roohollah, Toroghinejad Mohammad Reza. Materials Science and Engineering[J], A606: 443
    [50] Chowdhury P, Sehitoglu H, Abuzaid W, et al. International Journal of Plasticity[J], 2015, 71: 32
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Chen Jianjun, Ding Yutian, Ma Yuanjun, Gao Yunbi, Wang Xingmao. Molecular dynamics simulation of tensile deformation behavior of monocrystalline Ni and its alloys with different stacking fault energies[J]. Rare Metal Materials and Engineering,2023,52(9):3186~3197.]
DOI:10.12442/j. issn.1002-185X.20220731

Copy
Article Metrics
  • Abstract:377
  • PDF: 1121
  • HTML: 25
  • Cited by: 0
History
  • Received:September 13,2022
  • Revised:February 03,2023
  • Adopted:February 14,2023
  • Online: September 25,2023
  • Published: September 21,2023