+Advanced Search
Progress of Irradiation-Resistance Materials
Author:
Affiliation:

1.School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China;2.Northwest Institute for Nonferrous Metal Research, Xi 'an 710016, China;3.Northwestern Polytechnical University, Xi 'an 710072, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [58]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Developing novel materials for nuclear reactors is a crucial research task. Due to the harsh conditions in the reactors, core materials must possess exceptional high-temperature properties, including high strength, ductility, corrosion resistance, and irradiation resistance. Additionally, the low neutron absorption cross-section and the neutron activation are also important considerations. It is widely acknowledged that the choice of core material for a typical space nuclear reactor is primarily determined by the operation temperature. Generally, with increasing the designed operation temperature of reactor, 316 stainless steel, nickel-based superalloys, oxide-dispersion-strengthened (ODS) steel, refractory metals, and SiC ceramics are preferred in order. Besides, the high entropy alloys attract extensive attention for nuclear applications. This review summaries the evolution of mechanical properties of different material systems during irradiation process, providing guidance for the further research in irradiation resistance.

    Reference
    [1] Byun T S, Hashimoto N, Farrell K. Journal of Nuclear Mate-rials[J], 2006, 351(1–3): 303
    [2] Hashimoto N, Zinkle S J, Rowcliffe A F et al. Journal of Nuclear Materials[J], 2000, 283–287(1): 528
    [3] Busby J, Hoelzer D, Kenik E et al. International Conference on Fusion Reactor Materials[C]. Nice: International Atomic Energy Agency, 2007
    [4] Tan L, Hoelzer D T, Busby J T et al. Journal of Nuclear Materials[J], 2012, 422(1–3): 45
    [5] Kenik E A, Busby J T, Gussev M N et al. Journal of Nuclear Materials[J], 2017, 483: 35
    [6] Huang Qunying, Li Chunjing, Li Yanfang et al. Chinese Journal of Nuclear Science and Engineering[J], 2007, 27(1): 41 (in Chinese)
    [7] Li Xinggang, Yan Qingzhi, Ge Changchun. Journal of Iron and Steel Research[J], 2009, 21(6): 6 (in Chinese)
    [8] Lindau R, Moslang A, Rieth M et al. Fusion Engineering and Design[J], 2005, 75: 989
    [9] Wang P H, Chen J M, Fu H Y et al. Journal of Nuclear Mate-rials[J], 2013, 442(1–3): S9
    [10] Wesemann I, Hoffmann A, Mrotzek T et al. International Journal of Refractory Metals and Hard Materials[J], 2010, 28(6): 709
    [11] Huang Q, Li C, Li Y et al. Journal of Nuclear Materials[J], 2007, 367–370(A): 142
    [12] Xiong X S, Yang F, Zou X R et al. Journal of Nuclear Mate- rials[J], 2012, 430(1–3): 114
    [13] Hu X X, Tan L Z, Wang K et al. Journal of Nuclear Mate- rials[J], 2019, 516: 144
    [14] David A, Maxim N, Campbell C et al. Acta Materialia[J], 2022, 231: 117 889
    [15] Byun T S, Farrell K. Journal of Nuclear Materials[J], 2003, 318: 292
    [16] Li J Y, Marquis E A. Journal of Nuclear Materials[J], 2021, 553: 153 040
    [17] Leonard K J. Comprehensive Nuclear Materials[J], 2012, 4: 181
    [18] Li J T, Beyerlein I J, Han W Z. Acta Materialia[J], 2022, 226: 117 656
    [19] Souza F I R, Dutta A, Junior D R A et al. Acta Materialia[J], 2020, 197: 123
    [20] Bisson E E, Anderson W J. Advanced Bearing Technology[M]. Ohio: National Aeronautics and Space Administration, 1964
    [21] Schneibel J H, Brady M P, Kruzic J J et al. Zeitschrift für Metallkunde[J], 2022, 96(6): 632
    [22] Li Y P, Ran G, Guo Y J et al. Acta Materialia[J], 2020, 201: 462
    [23] Mahajan S, Eyre B L. Acta Materialia[J], 2017, 122: 259
    [24] Busby J T, Leonard K J, Zinkle S J J. Journal of Nuclear Materials[J], 2007, 366(3): 388
    [25] Hasegawa A, Kazukiyo U, Manabu S et al. Journal of Nuclear Materials[J], 1998, 258: 902
    [26] Johnson P K. 14th International Plansee Seminar[C]. Reutte: International Journal of Powder Metallurgy, 1997(8): 72
    [27] Nordlund K, J-Zinkle S, E-Sand A. Journal of Nuclear Mate-rials[J], 2018, 512: 450
    [28] Nemoto Y, Hasegawa A, Satou M et al. Journal of Nuclear Materials[J], 2004, 324(1): 62
    [29] Krajnikov A V, Morito F, Danylenko M I. Journal of Nuclear Materials[J], 2014, 444(1–3): 404
    [30] Fabritsiev S A, Pokrovsky A S. Journal of Nuclear Materials[J], 1998, 252(3): 216
    [31] Qiu X, Pang H, Ran G et al. Journal of Nuclear Materials[J], 2022, 559: 153 443
    [32] Katoh Y, Snead L L, Garrison L M et al. Journal of Nuclear Materials[J], 2019, 520: 193
    [33] Fan C C, Li C Y, Parish C M. Acta Materialia[J], 2021, 203: 116 420
    [34] Greaves G, Hinks J A, Donnelly S E. Journal of Nuclear Materials[J], 2019, 514: 123
    [35] Ferroni F, Yi X O, Arakawa K et al. Acta Materialia[J], 2015, 90: 380
    [36] Yi X O, Jenkins M L, Kirk M A et al. Acta Materialia[J], 2016, 112: 105
    [37] Yang Q, Fan H Y, Ni W Y et al. Acta Materialia[J], 2015, 92: 178
    [38] Agarwal S, Duscher G, Zhao Y et al. Acta Materialia[J], 2018, 161: 207
    [39] Tang Z, Gao M C, Diao H et al. JOM[J], 2013, 65: 1848
    [40] Li Z Z, Zhao S T, Ritchie R O et al. Progress in Materials Science[J], 2019, 102: 296
    [41] Senkov O N, Miracle D B, Chaput K J et al. Journal of Materials Research[J], 2018, 33(19): 3092
    [42] Gorsse S, Miracle D B, Senkov O N. Acta Materialia[J], 2017, 135: 177
    [43] Senkov O N, Wilks G B, Miracle D B et al. Intermetallics[J], 2010, 18(9): 1758
    [44] Senkov O N, Wilks G B, Scott J M et al. Intermetallics[J], 2011, 19(5): 698
    [45] Chen W Y, Kirk M A, Hashimoto N et al. Journal of Nuclear Materials[J], 2020, 539: 152 324
    [46] Dobbelstein H, Thiele M, Gurevich E L et al. Physics Pro- cedia[J], 2016, 83: 624
    [47] Han Z D, Chen N, Zhao S F et al. Intermetallics[J], 2017, 84: 153
    [48] Han Z D, Luan H W, Liu X et al. Materials Science and Engineering A[J], 2018, 712: 380
    [49] El-Atwani O, Li N, Li M et al. Science Advances[J], 2019, 5(3): eaav2002
    [50] Was G S, Petti D, Ukai S et al. Journal of Nuclear Materials[J], 2019, 527: 151 837
    [51] Hosemann P, Frazer D, Fratoni M et al. Scripta Materials[J], 2018, 143: 181
    [52] Zinkle S J, Was G S. Acta Materials[J], 2013, 61(3): 735
    [53] El-Genk M S, Tournier J M. Journal of Nuclear Materials[J], 2005, 340(1): 93
    [54] Lee H B, Chen J J, Meng S et al. Journal of Nuclear Mate- rials[J], 2021, 556: 153 193
    [55] Wu Z F, Xu L D, Chen H Q et al. Journal of Nuclear Mate- rials[J], 2022, 559: 153 418
    [56] Katayama K, Matsumoto T, Ipponsugi A et al. Journal of Nuclear Materials[J], 2022, 565: 153 723
    [57] Liu J Z, Huang H F, Gao J et al. Journal of Nuclear Mate- rials[J], 2019, 517: 328
    [58] Dutta A, Sarkar A, Mukherjee P et al. Journal of Nuclear Materials[J], 2021, 557: 153 221
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Xu Hailong, Huang Li, Zhang Wen, Gao Xuanqiao, Yang Yichao, Shan Zhiwei, Li Jianfeng. Progress of Irradiation-Resistance Materials[J]. Rare Metal Materials and Engineering,2023,52(5):1661~1672.]
DOI:10.12442/j. issn.1002-185X.20220786

Copy
Article Metrics
  • Abstract:970
  • PDF: 1346
  • HTML: 211
  • Cited by: 0
History
  • Received:October 08,2022
  • Revised:November 30,2022
  • Adopted:January 05,2023
  • Online: May 31,2023
  • Published: May 29,2023