+Advanced Search
Optimization of Process Parameters of Ti2AlNb-based Alloys Based on Response Surface Methodology
Author:
Affiliation:

School of Aeronautical Manufacturing Engineering,Nanchang Hangkong University

Clc Number:

TG146.2+3

  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In this paper, the hot deformation behavior of Ti2AlNb-based alloy was studied by using Gleeble-3500 thermal simulation experiment machine to carry out compression experiments with deformation temperature of 650-850℃ and strain rate of 0.001-1s-1, and the optimal process parameter range of Ti2AlNb-based alloy was obtained. First, the flow stress curve of Ti2AlNb-based alloy is analyzed, and the hot deformation activation energy Q, lnZ and power dissipation factor are calculated η, so as to establish the thermal deformation activation energy Q, lnZ and power dissipation factor η, the second order response surface model of Ti2AlNb-based alloy was established, and the optimal region after optimization was obtained through multi-objective visual optimization, which was verified with the microstructure diagram. The results show that the flow stress of Ti2AlNb-based alloys decreases with increasing deformation temperature and decreasing strain rate. The established response surface model has high accuracy, which can be used for optimization and analysis of process parameters; the results of multi-objective visual optimization show that the optimal region of Ti2AlNb-based alloy after optimization is the deformation temperature of 750-850℃ and the strain rate of 0.01-0.03s-1.

    Reference
    [1]Liu Xiaoyan(刘晓燕), Zhang Qi(张琪), Yang Yanhui(杨艳慧), et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2022, 51(01): 149-158.
    [2]Qiang Fengming(强凤鸣), Kou Hongchao(寇宏超), Jia Mengyu(贾梦宇), et al. Journal of Netshape Forming Engineering(精密成形工程)[J], 2022, 14(1): 11-18.
    [3]Wu Z H, Kou H C, Chen N N, et al. Journal of Materials Research and Technology[J], 2022, 20: 469-484.
    [4]Xiang J Y, Xie F Q, Wu X Q, et al. Intermetallics[J], 2021, 132: 107151.
    [5]Wu Yong(武永), Zhou Xianjun(周贤军), Wu Dipeng(吴迪鹏), et al. Journal of Netshape Forming Engineering(精密成形工程)[J], 2022, 14(4): 102-108.
    [6]Zhang Q C, Chen M H, Wang H, et al. Transactions of Nonferrous Metals Society of China[J], 2016, 26(3): 722-728.
    [7]Zeng Weidong(曾卫东), Xu Bin(徐斌), He Dehua(何德华), et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2007(04): 592-596.
    [8]Xue Kemin(薛克敏), Hu Yong(胡勇), Shi Yingbin(时迎宾), et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2019, 48(08): 2556-2561.
    [9]Wang Li(王力), Liang Wenping(梁文萍), Miu Qiang(缪强), et al. Heat Treatment of Metals(金属热处理)[J], 2015, 40(03): 52-57.
    [10]Chen Liwen(陈利文), Hou Hua(侯华), Jin Yuchun(靳玉春), et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2018, 47(04): 1174-1179.
    [11]Guo L G, Dang L, Yang H, et al. Transactions of Nonferrous Metals Society of China[J], 2016, 26(07): 1902-1911.
    [12]Li Qihan(李奇涵), Jing Shufan(景淑帆), Gao Song(高嵩), et al. Forging and Stamping Technology(锻压技术)[J], 2020, 45(06): 93-101.
    [13]Zhao Jiquan(赵继全), Qu Zhoude(曲周德), Wu Chuan(武川), et al. Journal of Netshape Forming Engineering(精密成形工程)[J], 2022, 14(02): 74-82.
    [14]Li Ping(李萍), Ding Yonggen(丁永根), Yao Pengpeng(姚彭彭), et al. The Chinses Journal of Nonferrous Metals(中国有色金属学报)[J], 2016, 26(05): 1019-1026.
    [15]Xiao Rui(肖瑞), Yang Ming(杨明), Huang Chaowen(黄朝文), et al. Chinese Journal of Rare Metals(稀有金属)[J], 2019, 43(10): 1040-1046.
    [16]Ding Kailun(丁凯伦), Yang Xirong(杨西荣), Liu Xiaoyan(刘晓燕), et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2020, 49(09): 3107-3114.
    [17]Peng Jiahao(彭嘉豪), Sun Qianjiang(孙前江), Zhou Jianwei(周建伟), et al. The Chinses Journal of Nonferrous Metals(中国有色金属学报)[J], 2022, 32(04): 994-1003.
    [18]Yin Baoqin(尹宝琴), Xu Shuai(徐帅), Xiao Namin(肖纳敏), et al. Journal of Plasticity Engineering(塑性工程学报)[J], 2022, 29(08): 193-202.
    [19]Zhang Bing(张兵), Liu Pengru(刘鹏茹), Chen Chaofeng(陈韩锋), et al. The Chinses Journal of Nonferrous Metals(中国有色金属学报)[J], 2022, 32(02): 466-475.
    [20]Prasad Y, Gegel H L, Doraivelu S M, et al. Metallurgical Transactions A[J], 1984, 15(10): 1883-1892.
    [21]Wen D X, Lin Y C, Li H B, et al. Materials Science and Engineer: A[J], 2014, 591: 183-192.
    [22]Li Hongjiang(李鸿江), Yu Yang(于洋), Song Xiaoyun(宋晓云), et al. Chinese Journal of Rare Metals(稀有金属)[J], 2020, 44(5): 462-468.
    [23]Seongbin G, Youngchul G C. Molecular Systems Design Engineering[J], 2022, 7.
    [24]Wang P, Li S, Geng X, et al. Journal of Alloys and Compounds[J], 2020, 843: 156084.
    [25]Fuse K, Dalsaniya A, Modi D, et al. Materials[J], 2021, 14(23): 7408.
    [26]Li C M, Huang L, Zhao M J, et al. Journal of Alloys and Compounds[J], 2022, 924: 166481.
    [27]Ding Haochen(丁浩晨), Zhao Yanjun(赵艳君), Wei Zongfan(韦宗繁), et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2022, 51(07): 2608-2616.
    [28]Li C M, Huang L, Zhao M J, et al. Materials Science and Engineering: A[J], 2020, 797.
    [29]Sun Y, Feng X Y, Hu L X, et al. Journal of Alloys and Compounds[J], 2018, 753: 256-271.
    [30]Chen Guiqing(陈贵清), Fu Gaosheng(傅高升), Yan Wenduan (颜文煅), et al. Journal of Plasticity Engineering(塑性工程学报)[J], 2011, 18(04): 28-33 48.
    [31]Huang Zhengqin(黄钲钦), Wang Yan(王岩), Liu Minxue(刘敏学), et al. The Chinses Journal of Nonferrous Metals(中国有色金属学报)[J], 2021, 31(07): 1842-1855.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Liu Jie, Wang Kelu, Lu Shiqiang, Li Xin, Huang Wenjie, Zeng Quan, Zhou Tong, Wang Zengqiang. Optimization of Process Parameters of Ti2AlNb-based Alloys Based on Response Surface Methodology[J]. Rare Metal Materials and Engineering,2023,52(10):3581~3589.]
DOI:10.12442/j. issn.1002-185X.20220789

Copy
Article Metrics
  • Abstract:276
  • PDF: 1151
  • HTML: 0
  • Cited by: 0
History
  • Received:October 09,2022
  • Revised:September 19,2023
  • Adopted:November 11,2022
  • Online: October 27,2023
  • Published: October 24,2023