Abstract:The nickel-based ODS alloy could be applied to nuclear reactor and aerospace. The dissolution and precipitate of the oxide particles or the Ostwald repining in the nickel-based ODS alloy resulting from the grain boundary migration affect the mechanical properties of the nickel-based alloy by increasing the size and decreasing the number density of the oxide particles during the cold working and heat treatment. In this paper, the microstructure of the cold-rolled nickel-based ODS alloy annealing at different temperature were characterized by XRD, EBSD, and TEM. The influence of the annealing process on the microstructure of the cold-rolled nickel-based ODS alloy was studied. It is indicated that the dislocation density of the nickel-based ODS alloy decreased and part of the oxide particle coarsened with the annealed temperature rising. Besides, there were the uniform microstructure and the fine oxide particles in the nickel-based ODS alloy after annealing at 900 ℃. According to the calculation, the tensile strength of the nickel-based ODS alloy after annealing at 900 ℃ is mainly contributed by the dispersion strengthening and dislocation strengthening which were the theoretical basis and the effective method to improving the properties of the nickel-based ODS alloy.