+Advanced Search
Microstructure and Diffusion Mechanism of CoCrCuFeNi HEA Joints Diffusion Welded Using Co Filler
Author:
Affiliation:

1.Key Laboratory of Light Metal Materials Processing Technology of Guizhou Province, Guizhou Institute of Technology, Guiyang 550003 China;2.Department of Materials & Energy Engineering, Guizhou Institute of Technology, Guiyang 550003, China;3.Special Functional Materials Collaborative Innovation Center of Guizhou Province, Guizhou Institute of Technology, Guiyang 550003, China

Fund Project:

Guizhou Province Science and Technology Planning Project (Qianke He Jichu ZK[2022] Yiban 175); National Natural Science Foundation of China (51964011); Education Department Youth Science and Technology Talent Growth Project of Guizhou Province (Qian Jiao He KY [2022] 342); Special Project for Cultivation and Innovation Exploration of New Academic Talents of Guizhou Institute of Technology (GZLGXM-13); High Level Talent Program of Guizhou Institute of Technology (XJGC20190916); Guzhou Province High Level Innovative Talents (Qianke He Platform and Talent (2022) 011-1); Guzhou Colleges and Universities Process Industry New Process Engineering Research Center (QianJiaoJi (2022)034)

  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    A CoCrCuFeNi high-entropy alloy (HEA) was diffusion welded using a Co filler at 850, 950, 1050, and 1100 °C, and the microstructure and diffusion mechanism of the joints were examined. Results show that firm connections are achieved at each temperature, no intermetallic compound forms in the joints, and some Kirkendall voids are remained on the HEA side around the interface. The diffusion coefficients of Cr, Fe, Ni, and Cu in the Co filler at 850 and 950 °C are calculated, ranked as follows: Cu>Cr>Fe>Ni. The diffusion rates of all elements are at the same level. The diffusion between the CoCrCuFeNi HEA and Co filler occurs under the combined action of the vacancy and grain boundary diffusion mechanisms.

    Reference
    [1] Zhang Yali, Jiang Xiaosong, Fang Yan et al. Materials Today Communications[J], 2021, 28: 102 503
    [2] Zheng Wei, Han Junzhao, Duan Xing et al. Rare Metal Materials and Engineering[J], 2022, 51(9): 3230
    [3] Verma A, Tarate P, Abhyankar A C et al. Scripta Materialia[J], 2019, 161: 28
    [4] Zheng Fanlin, Sun Tianming, Chi Hanjuan et al. Rare Metal Materials and Engineering[J], 2022, 51(11): 4039
    [5] Sokkalingam R, Pravallika B, Sivaprasad K et al. Journal of Materials Research[J], 2022, 37: 272
    [6] Lin Yuan, Xiong Jiangtal, Du Yajie et al. Journal of Materials & Science Technology[J], 2021, 61: 176
    [7] Zhang Yalin, Jiang Xiaosong, Fang Yongjian et al. Materials Letters[J], 2020, 279: 128 509
    [8] Li Peng, Sun Haotian, Wang Shuai et al. Materials Science & Engineering A[J], 2020, 793: 139 843
    [9] Bridges Denzel, Zhang Suhong, Lang Samantha et al. Materials Letters[J], 2018, 215: 11
    [10] Zhang L X, Shi J M, Li H W et al. Materials and Design[J], 2016, 97: 230
    [11] Oliveira J P, Shen Jiajia, Zeng Z et al. Scripta Materialia[J], 2022, 206: 114 219
    [12] Adomako Nana Kwabena, Shin Giseung, Park Nokeun et al. Journal of Materials Science & Technology[J], 2021, 85: 95
    [13] Wang Ge, Sheng Guangmin, Sun Jianchun et al. Journal of Alloys and Compounds[J], 2020, 829: 154 520
    [14] Li Juan, Zhao Honglong, Zhou Nian et al. Acta Metallurgica Sinica[J], 2021, 57: 1567 (in Chinese)
    [15] Yao Haining, Wen Hongyuan, Chen Ke et al. Scripta Materia- lia[J], 2021, 201: 113 972
    [16] Arab Ali, Guo Yansong, Zhou Qiang et al. Vacuum[J], 2020, 174: 109 221
    [17] Tsao L C, Chang S Y, Yu Y C. Transactions of Nonferrous Metals Society of China[J], 2018, 28: 748
    [18] Wang Bingfeng, Peng Hao, Chen Zhen. Journal of Materials Research and Technology[J], 2021, 12: 1970
    [19] Ding Wen, Liu Ning, Fan Jiacheng et al. Intermetallics[J], 2021,129: 107 027
    [20] Liu Yulin, Luo Yongchun, Zhao Dan et al. Journal of Mechanical Engineering[J], 2017, 53: 84 (in Chinese)
    [21] Lei Y, Hu S P, Yang T L et al. Journal of Materials Processing Technology[J], 2020, 278: 116 455
    [22] Wang Gang, Yang Yunlong, He Rujie et al. Journal of the European Ceramic Society[J], 2020, 40: 3391
    [23] Gu Xiaoyan, Zhang Lihui. Materials Letters[J], 2022, 312: 131 562
    [24] Hao Xiaohu, Dong Honggang, Xia Yueqing et al. Journal of Alloys and Compounds[J], 2019, 803: 649
    [25] Azhari Saray Hamed, Sarkari Khorrami Mahmoud, Nademi Babahadi Azadeh et al. Intermetallics[J], 2020, 124: 106 876
    [26] Tomashchuk I, Sallamand P, Andrzejewski H et al. Intermetal-lics[J], 2011, 19: 1466
    [27] Wu Xiaopan. Study on Laser Weldability of CuCoCrFeNi High Entropy Alloy[D]. Shenyang: Shenyang Ligong University, 2017 (in Chinese)
    [28] Fan Y, Li P, Chen K et al. Journal of Laser Applications[J], 2020, 32: 22 005
    [29] Verma A, Natu H, Balasundar I et al. Science and Technology of Weld and Joining[J], 2022, 27:197
    [30] Kashani H, Amadeh A, Ghasemi H M. Wear[J], 2007, 262: 800
    [31] Campo Kaio Niitsu, Freitas Caio Chaussê, Fanton Leonardo et al. Journal of Materials and Science & Technology[J], 2020, 52: 207
    [32] Lee Baek Hee, Ahn Bong Su, Kim Dae Gun et al. Materials Letters[J], 2003, 57:1103
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Li Juan, Luo Shaomin, Zhao Honglong, Zhou Nian, Qin Qingdong. Microstructure and Diffusion Mechanism of CoCrCuFeNi HEA Joints Diffusion Welded Using Co Filler[J]. Rare Metal Materials and Engineering,2023,52(4):1176~1183.]
DOI:10.12442/j. issn.1002-185X. E20220028

Copy
Article Metrics
  • Abstract:450
  • PDF: 1098
  • HTML: 192
  • Cited by: 0
History
  • Received:October 09,2022
  • Revised:April 04,2023
  • Adopted:January 05,2023
  • Online: April 28,2023
  • Published: April 25,2023