摘要
利用机械合金化与放电等离子烧结工艺相结合制备了AZ91-La-Yb海水电池用阳极镁合金,并系统研究了稀土 La-Yb掺杂对阳极材料微观组织及电化学行为的影响。结果表明:通过机械合金化-放电等离子烧结工艺制备的AZ91-La-Yb合金由等轴晶构成,一方面,掺杂La-Yb后,形成了在晶界处均匀分布的微米级(0.5~2 μm)富RE相,该相主要由稀土单质(RE=La,Yb)及Mg(RE)固溶体共同组成;另一方面,通过放电等离子烧结引起的塑性变形作用以及稀土La-Yb的掺杂效应,显著改善了β-Mg17Al12相的形貌,使其由粗大的网状转变为纤细的长条状。均匀分布的微米级富RE相及更加细小的β相联合作用,共同促进了镁合金的均匀溶解放电,同时有效缓解了镁合金的局部腐蚀。与AZ91阳极用镁合金相比,掺杂了稀土La-Yb的AZ91-La-Yb表现出更加平稳的放电电压及良好的放电性能,在20 mA/c
海水电池作为一种高性能、安全环保、无需携带电解质的便携式化学电源,在军用、民用海洋设备(如鱼雷,海上探测灯等)的动力供电应用上展现出了非常出色的发展前景。金属镁具有较低的标准电极电位(–2.37 V vs. SHE)及较高的理论比容量(2.2 Ah/g
近年来研究者们发现少量稀土元素(如La,Gd,Sm,Y等
在粉末冶金工艺中,机械合金化(MA)是一种通过高能球磨使粉末经受反复的变形、冷焊、破碎,从而达到元素间原子水平合金化的复杂物理化学过
稀土元素La的添加已被证实能够有效改善镁合金的放电性能。然而,稀土元素Yb在镁合金改性方面的研究报道较少。因此,本研究采用机械合金化-放电等离子烧结工艺联合制备AZ91-La-Yb阳极材料,对其进行物相分析,形貌表征,并运用电化学阻抗,极化曲线以及恒电流放电等电化学测试,研究La-Yb掺杂对海水电池阳极镁合金微观组织及电化学性能的影响。
原料粉末为AZ91、La、Yb的高纯度粉末(纯度99.9%),各元素粉末初始粒径均<75 μm。原料粉末按AZ91-0.4La-1.2Yb(质量分数,%)配置30 g混合粉末,以硬脂酸为过程控制剂,将其放入填充了氩气气氛的球磨罐内,并放置在球磨机(QM-1SP4)上进行球磨,球磨转速为310 r/min,球料比为20:1,球磨时间为40 h。将磨好的粉末填充至石墨模具内并放入放电等离子烧结炉中进行烧结,设置压力为40 MPa,烧结温度为400 ℃,并保温10 min,烧结后在炉内冷却至室温,最终获得尺寸为 Φ30 mm×12 mm的合金块材。并将AZ91原料粉末运用上述相同烧结工艺制备出AZ91合金,作为对比试验。
采用XRD分析样品的物相组成,XRD测量使用具有Cu Kα辐射的DX-2700型X射线衍射仪,采用电压40 kV,电流30 mA,扫描速度2°/min,扫描范围为20°~80°。利用金相显微镜(Axio Observer 3)和扫描电镜(JSM-7900F)观察了试样的微观组织。在观测前,试样先经800~4000目碳化硅砂纸打磨,金刚石抛光液抛光,并用腐蚀液(1 mL硝酸+1 mL冰醋酸+1 g草酸+98 mL去离子水)腐蚀出其微观组织。通过FIB技术制样,利用透射电镜(FEI Talos F200X)进一步分析表征合金微观组织。
电化学测试装置为CHI660C电化学工作站。利用三电极体系进行测试,参比电极为饱和甘汞电极(SCE),对电极采用10 mm×10 mm的铂片电极,工作电极为暴露表面为0.95 c
阳极使用本实验制备好的镁合金,阴极使用以MnO2作为催化剂的商业空气阴极,组装成海水电池进行全电池放电测试,反应面积为0.5 c

图1 AZ91和AZ91-La-Yb的粉末与块材的XRD图谱及局部放大XRD图谱
Fig.1 XRD patterns of powders and bulk materials of AZ91 and AZ91-La-Yb alloys (a); local magnification of the XRD pattern in Fig.1a (b)
图2为球磨前后粉末的SEM照片。由图2a可见AZ91原料粉末为规则的球状粉末,颗粒大小约为40 μm,La、Yb原料粉末形貌如图2b、2c所示,均呈现不规则形状,尺寸分布不均匀,但均集中于2~30 μm之间。由图2d、2e可见,经40 h球磨的AZ91-La-Yb粉末尺寸分布均匀,呈现类似片状的形貌结构。由图2e EDS能谱表明,经40 h球磨后的稀土La、Yb元素分布均匀,无明显偏析现象,且由图2e的EDS能谱分析结果可知,稀土La、Yb含量几乎等同于初始掺杂含量,经过40 h的机械合金 化,稀土元素已实现均匀分布。

图2 球磨前AZ91、La、Yb粉末的SEM照片;经40 h球磨得到的AZ91-La-Yb粉末的SEM照片、EDS元素面分布及EDS能谱分析
Fig.2 SEM images of the AZ91 (a), La (b), and Yb (c) powders before ball milling; SEM image, corresponding EDS element mappings (d), and EDS analysis results (e) of AZ91-La-Yb powder obtained after ball milling for 40 h

图3 AZ91及AZ91-La-Yb合金块材的OM组织
Fig.3 OM microstructures of AZ91 (a) and AZ91-La-Yb (b) alloy bulk materials

图4 AZ91及AZ91-La-Yb合金块材SEM照片及对应的元素EDS面分布
Fig.4 SEM images and corresponding EDS element mappings of AZ91 (a–b) and AZ91-La-Yb (c–d) bulk materials alloys
为了进一步分析富RE相的存在形式,采用TEM进一步表征分析。

图5 AZ91-La-Yb合金块材的TEM分析
Fig.5 Bright-field image of AZ91-La-Yb alloy (a); magnified microstructure of zone 1 marked in Fig.5a and corresponding EDS element mappings (b); EDS analysis result of marked point A in Fig.5b (c); magnified microstructure of zone 2 marked in Fig.5a and corresponding EDS element mappings (d); EDS analysis result (e) and SAED pattern (f) of marked point B in Fig.5d; magnified microstructure of zone 3 marked in Fig.5a and corresponding EDS element mappings (g); EDS analysis result of point C (h) and point D (i) marked in Fig.5g; bright-field image of RE-rich phase in Fig.5a (j); bright-field image of marked zone in Fig.5j (k); high-resolution image (l) and SAED pattern (m) of RE-rich phase in Fig.5a
2种阳极试样的开路电位与动电位极化曲线如

图6 AZ91和AZ91-La-Yb阳极在3.5% NaCl溶液中的开路电位及动电位极化曲线
Fig.6 Open circuit potential (a) and potentiodynamic polarization (b) curves of AZ91 and AZ91-La-Yb anodes in 3.5% NaCl solution
AZ91和AZ91-La-Yb阳极的极化曲线如
Sample | EOCP/V(vs.SCE) | Ecorr/V(vs.SCE) | icorr/μA·c | Rp/Ω·c |
---|---|---|---|---|
AZ91 | –1.557 | –1.523 | 184.6 | 105.9 |
AZ91-La-Yb | –1.568 | –1.539 | 283.4 | 63.6 |

图7 AZ91和AZ91-La-Yb阳极在3.5% NaCl溶液中的电化学阻抗图谱(Nyquist图谱)及等效电路图
Fig.7 Electrochemical impedance spectra (Nyquist plots) of AZ91 and AZ91-La-Yb anodes in 3.5% NaCl solution (a); equivalent circuit diagram (b)
Sample | Rs/Ω·c | CPEdl/×1 | n1 | Rct/Ω·c | CPEf/×1 | n2 | Rf/Ω·c | L/H·c | RL/Ω·c |
---|---|---|---|---|---|---|---|---|---|
AZ91 | 7.798 | 13.98 | 0.8928 | 326 | 57.46 | 1 | 106.8 | 105.3 | 490.9 |
AZ91-La-Yb | 9.694 | 4.977 | 0.9677 | 17.16 | 2.311 | 0.9964 | 93.61 | 21.4 | 54.65 |

图8 AZ91和AZ91-La-Yb阳极在不同电流密度下放电2 h的恒电流放电曲线
Fig.8 Constant current discharge curves of AZ91 and AZ91-La-Yb anodes at different current densities for 2 h: (a) 2.5 mA/c

图9 以AZ91、AZ91-La-Yb为阳极,MnO2为催化剂的商业空气阴极组装的海水电池在不同电流密度下的放电曲线
Fig.9 Discharge curves of seawater batteries with assembled AZ91, AZ91-La-Yb as anodes and air as cathode using MnO2 as catalyst at current densities of 10 mA/c
在
Sample | Current density/mA·c | Discharge voltage/V | Specific capacity/mAh· | Anode utilization efficiency/% |
---|---|---|---|---|
AZ91 | 10 | 1.021 | 896.23 | 36.19 |
20 | 0.733 | 952.14 | 49.13 | |
AZ91-La-Yb | 10 | 1.063 | 801.41 | 32.43 |
20 | 0.791 | 1068 | 50.4 |

图10 在不同电流密度下放电3 h并去除腐蚀产物后合金的形貌
Fig.10 Morphologies of AZ91 (a, c) and AZ91-La-Yb (b, d) alloys after discharge at the current density of 10 mA/c
1)采用机械合金化法结合放电等离子体烧结(SPS)工艺,可成功制备稀土La,Yb元素分布十分均匀的AZ91-La-Yb阳极材料。
2)通过双稀土La-Yb改性的AZ91-La-Yb阳极具有更活泼且更稳定的放电电压。这归功于改性后镁合金的微观机构:生成微米级的富RE相及由富RE相和塑性变形机制促使形成的纤细长条状β-Mg17Al12相,二者通过促进镁基体均匀溶解,及时剥落腐蚀产物及减少块状效应等机制来提升镁阳极的综合放电性能。
3)通过稀土La-Yb掺杂改性后的AZ91-La-Yb阳极,在比容量、阳极利用率方面相比AZ91阳极均有提升,在20 mA/c
1068 mAh/g,阳极利用率为50.4%,表现出了优异的综合电化学性能。
参考文献 References
Aurbach D, Lu Z, Schechter A et al. Nature[J], 2000, 407(6805): 724 [百度学术]
Liang W F, Lian LX, Lin Z F et al. Electrochimica Acta[J], 2023, 464: 10 [百度学术]
Kulekci M K. International Journal of Advanced Manufacturing Technology[J], 2008, 39(9–10): 851 [百度学术]
Mordike B L, Ebert T. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing[J], 2001, 302(1): 37 [百度学术]
Polmear I J. Materials Science and Technology[J], 1994, 10(1): 1 [百度学术]
Rahman M A, Wang X J, Wen C E. Journal of the Electrochemical Society[J], 2013, 160(10): A1759 [百度学术]
Song J F, She J, Chen D L et al. Journal of Magnesium and Alloys[J], 2020, 8(1): 1 [百度学术]
Yoo H D, Shterenberg I, Gofer Y et al. Energy & Environmental Science[J], 2013, 6(8): 2265 [百度学术]
Feng Y, Lei G, He Y Q et al. Transactions of Nonferrous Metals Society of China[J], 2018, 28(11): 2274 [百度学术]
Feng Y, Liu L, Wang R C et al. Transactions of Nonferrous Metals Society of China[J], 2016, 26(5): 1379 [百度学术]
Wang N G., Li W P, Huang Y X et al. Journal of Power Sources[J], 2019, 436: 11 [百度学术]
Feng Yan(冯 艳), Wang Richu(王日初), Peng Chanqun(彭超群) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2011, 40(6): 1010 [百度学术]
Zhang J P, Wang R C, Feng Y et al. Transactions of Nonferrous Metals Society of China[J], 2012, 22(12): 3039 [百度学术]
Li Y X, Yang L Z, Zhang Y S et al. Journal of Alloys and Compounds[J], 2022, 922: 11 [百度学术]
Ma J L, Wang G X, Li Y Q et al. Journal of Materials Engineering and Performance[J], 2019, 28(5): 2873 [百度学术]
Ma J L, Wang G X, Li Y Q et al. Ionics[J], 2019, 25(5): 2201 [百度学术]
Liu Q F, Yan Z, Wang E D et al. International Journal of Hydrogen Energy[J], 2017, 42(36): 23045 [百度学术]
Zhao Yanchun(赵炎春), Huang Guangsheng(黄光胜), Zhang Cheng(张 诚) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2018, 47(4): 1064 [百度学术]
Yu K, Xiong H Q, Wen L et al. Transactions of Nonferrous Metals Society of China[J], 2015, 25(4): 1234 [百度学术]
Jia Zheng, Yu Bing, Fu Li et al. Rare Metal Materials and Engineering[J], 2023, 52(2): 568 [百度学术]
Liu Yuxiang(刘玉项). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2021, 50(1): 361 [百度学术]
Chen X R, Zou Q, Shi Z M et al. Electrochimica Acta[J], 2022, 404: 8 [百度学术]
Zhang Y X, Fan L L, Guo Y Y et al. Electrochimica Acta[J], 2023, 460: 14 [百度学术]
Chen X R, Jia Y H, Le Q C et al. Journal of Magnesium and Alloys[J], 2021, 9(6): 2113 [百度学术]
Zhang Y W X, Han L, Ren L B et al. Transactions of Nonferrous Metals Society of China[J], 2022, 32(8): 2510 [百度学术]
Liu X, Xue J L, Zhang P J et al. Journal of Power Sources[J], 2019, 414: 174 [百度学术]
Chen X R, Liao Q Y, Le Q C et al. Electrochimica Acta[J], 2020, 348: 10 [百度学术]
Ma B J, Tan C, Ouyang L Z et al. Journal of Alloys and Compounds[J], 2022, 918: 11 [百度学术]
Gong Yuan, He Junguang, Wen Jiuba et al. Rare Metal Materials and Engineering[J], 2023, 52(2): 508 [百度学术]
Jia Dong(贾 东). Research on High Performance Magnesium Alloy Anode Materials for Seawater Batteries(海水电池用高性能镁合金阳极材料的研究)[D]. Tianjin: Tianjin University, 2022 [百度学术]
Wu Y P, Wang Z F, Liu Y et al. Journal of Materials Engineering and Performance[J], 2019, 28(4): 2006 [百度学术]
Suryanarayana C. Progress in Materials Science[J], 2001, 46(1–2): 1 [百度学术]
Yang Yu, Chen Junyu, Ma Tongxiang et al. Rare Metal Materials and Engineering[J], 2022, 51(9): 3182 [百度学术]
You Guoqiang, Yao Fanjin, Li Qi et al. Rare Metal Materials and Engineering[J], 2022, 51(9): 3497 [百度学术]
Suryanarayana C, Al-Aqeeli N. Progress in Materials Science[J], 2013, 58(4): 383 [百度学术]
Matteazzi P, LeCaer G, Mocellin A. Ceramics International[J], 1997, 23(1): 39 [百度学术]
Yu H, Sun Y, Hu L X et al. Journal of Alloys and Compounds[J], 2017, 704: 537 [百度学术]
Xie Q Y, Ma A B, Jiang J H et al. Journal of Materials Research and Technology-JMR&T[J], 2021, 11: 1031 [百度学术]
Song G L, Atrens A, Wu X L et al. Corrosion Science[J], 1998, 40(10): 1769 [百度学术]
Shi Y C, Peng C Q, Feng Y et al. Journal of Alloys and Compounds[J], 2017, 721: 392 [百度学术]
Li J R, Jiang Q T, Sun H Y et al. Corrosion Science[J], 2016, 111: 288 [百度学术]
Gu Xiongjie, Cheng Weili, Cheng Shiming et al. Journal of the Electrochemical Society[J], 2020, 167(2): 020501 [百度学术]
Wang Naiguang, Liang Jianwen, Liu Jingjing et al. Journal of the Electrochemical Society[J], 2021, 168(10): 14 [百度学术]
Deng M, Höche D, Lamaka S V et al. Corrosion Science[J], 2019, 153: 225 [百度学术]
Han Z, Xu W, Liu C B et al. Journal of Materials Research and Technology-JMR&T[J], 2023, 25: 7024 [百度学术]
Le T H, Mao P L, Hu W Y et al. Journal of the Electrochemical Society[J], 2023, 170(9): 11 [百度学术]
Song Y F, Ma J L, Li Y Q et al. Ionics[J], 2019, 25(12): 5899 [百度学术]
Wang Wan, Liu Jingjing, Chen Jinpeng et al. Electrochimica Acta[J], 2023, 470: 143352 [百度学术]
Wang Naiguang(王乃光), Wang Richu(王日初), Yu Kun(余 琨) et al. Chinese Journal of Nonferrous Metals(中国有色金属学报)[J], 2009, 19(1): 38 [百度学术]