Abstract:This paper reports the effect of the rolling mode on texture evolution in the commercially pure titanium (CP-Ti)TA2 sheets. For this purpose, total height reductions of 50% was imposed on the samples by three route modes: Route A is conventional rolling (CR), Route B is non-isothermal rolling(NWR) which CP-Ti sheets were rolled under a fixed temperature difference of 90-degree for the upper and lower rolls, respectively, Route C is repeated bending–unbending (RUB) where the sheets were bent by non-isothermal rolls with differential speed. Systematic analysis of the deformation characteristics refers to crystallographic orientation and texture component was performed using EBSD. The results indicate that the deformation characteristics significantly vary with the rolling modes. The texture of the CRed sheets is similar to those already reported for such rolled α-titanium, except that the center of the main peak is slightly shifted for a few degrees. And their small recrystallized grains and large deformed grains are oriented along <0001>//RD. However, prismatic texture formed in NWRed sheet and the grains’ orientation is <2-1-10>//RD. The texture and orientation changing are contributed to different temperatures for upper and lower rollers surface and thus induces intense shear strain uniformly throughout the sheet. NWR has a similar effect on shear deformation as equal channel angular extrusion. Basal texture and pyramidic texture are observed in the sheets processed by RUB, the priority was pyramidic texture. The finer grains exhibit a strong orientation of <0001>//RD, two weaker orientations of <2-1-12>//RD and<2-1-13>//RD.