+高级检索
基于ASSFOA-GRNN模型的激光定向能量沉积温度预测
作者:
作者单位:

1.沈阳工业大学 机械工程学院,辽宁 沈阳 110870;2.东北大学 机械工程与自动化学院,辽宁 沈阳 110819

作者简介:

通讯作者:

中图分类号:

TG665

基金项目:

国家重点研发计划(2022YFB4602200)


Temperature Prediction of Laser Directed Energy Deposition Based on ASSFOA-GRNN Model
Author:
Affiliation:

1.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China;2.School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China

Fund Project:

National Key Research and Development Program of China (2022YFB4602200)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的激光定向能量沉积(LDED)温度预测方法精度低、耗时长、成本高等问题,提出了一种结合数值模拟的机器学习模型来预测LDED过程中的温度。建立了有限元(FE)热分析模型,通过原位监测实验验证了模型的准确性,并基于FE模拟获得了预测模型的基础数据库。利用广义回归神经网络(GRNN)进行温度预测。为了减少GRNN调参过程中对人为经验的依赖并提升模型预测性能,引入了改进的自适应步长果蝇优化算法(ASSFOA)。最后将ASSFOA-GRNN模型与BPNN模型、GRNN模型和FOA-GRNN模型的预测性能进行了比较,评价指标包括均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R2)、训练时间和预测时间。结果表明,ASSFOA-GRNN模型在RMSE、MAE和R2指标上均表现最佳,尽管其预测效率略低于FOA-GRNN模型,但预测精度显著优于其他对比模型。本研究方法可用于LDED工艺的温度预测,也为同类方法的应用提供了借鉴。

    Abstract:

    To address the issues of low accuracy, long time consumption, and high cost of the traditional temperature prediction methods for laser directed energy deposition (LDED), a machine learning model combined with numerical simulation was proposed to predict the temperature during LDED. A finite element (FE) thermal analysis model was established. The model's accuracy was verified through in-situ monitoring experiments, and a basic database for the predictive model was obtained based on FE simulations. Temperature prediction was performed using a generalized regression neural network (GRNN). To reduce dependence on human experience during GRNN parameter tuning and to enhance model prediction performance, an improved adaptive step-size fruit fly optimization algorithm (ASSFOA) was introduced. Finally, the prediction performance of ASSFOA-GRNN model was compared with that of back-propagation neural network model, GRNN model, and fruit fly optimization algorithm (FOA)-GRNN model. The evaluation metrics included the root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), training time, and prediction time. Results show that the ASSFOA-GRNN model exhibits optimal performance regarding RMSE, MAE, and R2 indexes. Although its prediction efficiency is slightly lower than that of the FOA-GRNN model, its prediction accuracy is significantly better than that of the other models. This proposed method can be used for temperature prediction in LDED process and also provide a reference for similar methods.

    参考文献
    相似文献
    引证文献
引用本文

李殿起,柴媛欣,苗立国,唐敬虎.基于ASSFOA-GRNN模型的激光定向能量沉积温度预测[J].稀有金属材料与工程,2025,54(10):2470~2482.[Li Dianqi, Chai Yuanxin, Miao Liguo, Tang Jinghu. Temperature Prediction of Laser Directed Energy Deposition Based on ASSFOA-GRNN Model[J]. Rare Metal Materials and Engineering,2025,54(10):2470~2482.]
DOI:10.12442/j. issn.1002-185X.20240530

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-16
  • 最后修改日期:2025-02-25
  • 录用日期:2025-03-03
  • 在线发布日期: 2025-09-09
  • 出版日期: 2025-08-27