+高级检索
基于机器学习的铝合金电弧增材薄壁构件成形质量预测及多目标优化
作者:
作者单位:

1.西北工业大学 凝固技术全国重点实验室,陕西 西安 710072;2.西北工业大学 金属高性能增材制造与创新设计工业和信息化部重点实验室,陕西 西安 710072;3.西北工业大学 材料学院,陕西 西安 710072

作者简介:

通讯作者:

中图分类号:

TG146.21;TP181

基金项目:

陕西省教育厅服务地方专项计划(24JC086)


Machine Learning-Based Forming Quality Prediction and Multi-objective Optimization of Aluminum Alloy Thin-Walled Components in Wire Arc Additive Manufacturing
Author:
Affiliation:

1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;2.MIIT Key Laboratory of High Performance Additive Manufacturing and Innovative Design of Metal Structure, Northwestern Polytechnical University, Xi'an 710072, China;3.School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China

Fund Project:

Shaanxi Provincial Department of Education Local Service Special Project 24JC086

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电弧增材制造(WAAM)在航空航天领域具有重要应用价值,但其热输入不稳定性导致铝合金薄壁构件几何符合度差与内部缺陷多的问题突出。针对传统方法在多物理场耦合优化中的局限性,本研究提出数据驱动解决方案:通过构建工艺参数(电流、扫描速率、送丝速率)与成形质量(路径/层间壁厚一致性、孔隙率)的数据集,建立反向传播(BP)神经网络模型,并融合遗传算法(GA)优化原始模型,结合第二代非支配排序遗传算法(NSGA-II)进行成形质量多目标寻优。结果表明:优化后的GA-BP模型显著提升了沿路径壁厚一致性和孔隙率的预测精度,但层间壁厚一致性预测优化效果有限。通过NSGA-II获得的50组Pareto解集提出4类优化策略,验证试验结果表明模型预测误差为8.89%,准确地实现了成形质量指标的协同优化。

    Abstract:

    Wire arc additive manufacturing (WAAM) holds significant application value in the aerospace field, but the instability of heat input leads to prominent issues such as poor geometric conformity and numerous internal defects in aluminum alloy thin-walled components. To address the restrictions of traditional methods in multi-physics coupling optimization, this study proposed a data-driven solution by constructing a dataset of process parameters (current, scanning speed and wire feed rate) and forming quality (path/interlayer wall thickness consistency and porosity). A back propagation (BP) neural network model was established and optimized using the genetic algorithm (GA), combined with the non-dominated sorting genetic algorithm II (NSGA-II) for multi-objective optimization. The results show that the optimized GA-BP model significantly improves the prediction accuracy of path wall thickness consistency and porosity, but its optimization effect on interlayer wall thickness consistency prediction is restricted. Four types of optimization strategies are proposed based on the 50 Pareto solution sets obtained through NSGA-II, and validation tests indicate the model prediction error of 8.89%, accurately achieving the collaborative optimization of forming quality indicators.

    参考文献
    相似文献
    引证文献
引用本文

彭逸琦,高悦芳,华谭智,张思睿,赵宇凡,林鑫.基于机器学习的铝合金电弧增材薄壁构件成形质量预测及多目标优化[J].稀有金属材料与工程,2026,55(1):105~115.[Peng Yiqi, Gao Yuefang, Hua Tanzhi, Zhang Sirui, Zhao Yufan, Lin Xin. Machine Learning-Based Forming Quality Prediction and Multi-objective Optimization of Aluminum Alloy Thin-Walled Components in Wire Arc Additive Manufacturing[J]. Rare Metal Materials and Engineering,2026,55(1):105~115.]
DOI:10.12442/j. issn.1002-185X.20250150

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-21
  • 最后修改日期:2025-05-27
  • 录用日期:2025-06-11
  • 在线发布日期: 2025-12-15
  • 出版日期: 2025-12-08