+高级检索
非连续增强钛基复合材料多尺度组织设计与强韧化机制研究进展
作者:
作者单位:

1.哈尔滨工业大学 材料科学与工程学院,黑龙江 哈尔滨 150001;2.中原工学院 材料电子与储能学院,河南 郑州 451191;3.哈尔滨工业大学 分析测试中心,黑龙江 哈尔滨 150001

作者简介:

通讯作者:

中图分类号:

TB333;TG146.23

基金项目:

国家重点研发计划(2022YFB3707404);国家自然科学基金(52271099)


Research Progress on Multi-scale Microstructure Design and Strengthening-Toughening Mechanisms of Discontinuously Reinforced Titanium Matrix Composites
Author:
Affiliation:

1.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;2.School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 451191, China;3.Center for Analysis and Measurement, Harbin Institute of Technology, Harbin 150001, China

Fund Project:

National Key R&D Program of China (Grant No. 2022YFB3707404);National Nature Science Foundation of China(52271099)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    非连续增强钛基复合材料(DRTMCs)具有轻质高强耐热等优点,在航空航天和3C消费电子等领域具有广阔的应用前景。受自然界材料多级多尺度构型启发,非连续增强钛基复合材料从单一增强相均匀分布,到增强相构型化设计,进而发展为多尺度增强相构型化与钛合金基体跨尺度分级结构的协同设计调控,其组织形式逐渐丰富进而演化为多尺度异质结构,可以充分发挥多种协同强化机制,强化效率不断提高;同时能够合理分配应力应变,并有效阻碍裂纹萌生扩展,保证了良好的塑性和抗损伤能力。本文梳理了非连续增强钛基复合材料中典型构型设计及其发展思路,介绍其强韧化机制,并结合当前研究对未来材料发展方向提出展望,推动高性能钛基复合材料在关键领域的应用。

    Abstract:

    Discontinuously reinforced titanium matrix composites (DRTMCs) exhibit advantages such as light weight, high strength, and heat resistance, demonstrating broad application prospects in aerospace, consumer electronics, and other fields. Inspired by the multi-scale architectures of natural materials, the design of DRTMCs has evolved from uniformly distributed single reinforcements to architecture reinforcement configurations, and further to the coordinated design and regulation of multi-scale reinforcement architectures coupled with hierarchical titanium matrix. This progression has enriched their microstructure, leading to the formation of multi-scale heterogeneous structures. Such structures fully leverage synergistic strengthening mechanisms to enhance strengthening efficiency. Moreover, these composites effectively avoid strain localization to ensure favorable plasticity while maintaining excellent damage resistance. This review summarizes typical configuration design strategies and their evolutionary pathways in DRTMCs, elucidates the underlying strengthening-toughening mechanisms, and proposes future research directions based on current advancements to advance the application of high-performance titanium matrix composites in critical fields.

    参考文献
    相似文献
    引证文献
引用本文

丛光辉,陈志斌,崔喜平,黄陆军,王之祺,张圆圆,安琦,陈昕,王帅,耿林.非连续增强钛基复合材料多尺度组织设计与强韧化机制研究进展[J].稀有金属材料与工程,2026,55(4):1078~1089.[Cong Guanghui, Chen Zhibin, Cui Xiping, Huang Lujun, Wang Zhiqi, Zhang Yuanyuan, An Qi, Chen Xin, Wang Shuai, Geng Lin. Research Progress on Multi-scale Microstructure Design and Strengthening-Toughening Mechanisms of Discontinuously Reinforced Titanium Matrix Composites[J]. Rare Metal Materials and Engineering,2026,55(4):1078~1089.]
DOI:10.12442/j. issn.1002-185X.20250305

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-30
  • 最后修改日期:2025-07-31
  • 录用日期:2025-08-27
  • 在线发布日期: 2026-02-11
  • 出版日期: 2026-01-31