+高级检索
难熔金属的增材制造工艺优化与性能调控研究进展
作者:
作者单位:

1.西安交通大学 金属材料强度全国重点实验室,陕西 西安 710049;2.国家增材制造创新中心,陕西 西安 710300;3.西安交通大学 机械工程学院,陕西 西安 710049

作者简介:

通讯作者:

中图分类号:

基金项目:

国家磁约束核聚变能发展研究专项 2024YFE03260300


Research Progress on Process Optimization and Perfor-mance Control of Additive Manufacturing for Refractory Metals
Author:
Affiliation:

1.State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China;2.National Innovation Institute of Additive Manufacturing, Xi 'an 710300, China;3.School of Mechanical Engineering, Xi 'an Jiaotong University, Xi 'an 710049, China

Fund Project:

National MCF Energy R&D Program (2024YFE03260300)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    难熔金属(钨、钽、钼和铌)凭借其卓越的熔点、热稳定性和耐腐蚀性,在核能与航空航天等工业领域发挥着关键作用。这类金属具有体心立方晶体结构,其滑移系数量有限且位错运动受阻,导致显著的低温脆性,给传统加工工艺带来巨大挑战。增材制造技术提供了一种创新的方法,能够无需模具生产复杂零件,显著提高了材料的使用效率。本文概述了用于生产钨、钽、钼和铌等难熔金属的增材制造技术,特别是激光粉末床熔融技术的最新进展。本综述重点关注关键工艺参数(激光功率、扫描策略和粉末特性)对材料微观结构演变、冶金缺陷形成以及机械性能的影响机制。优化粉末特性(如球形度)、实施基板预热以及制定合金化策略能够显著提高制造零件的致密度和抗裂性能。同时,严格控制氧杂质含量以及优化能量密度输入是实现难熔金属强度和延展性同步提升的关键因素。尽管增材制造技术为难熔金属的加工提供了创新解决方案,但残余应力控制、微观结构和性能各向异性以及工艺稳定性等关键问题仍需解决。这篇综述不仅为高性能难熔金属的增材制造提供了理论基础,还为其工业应用提出了前瞻性的方向。

    Abstract:

    Refractory metals, including tungsten (W), tantalum (Ta), molybdenum (Mo), and niobium (Nb), play a vital role in industries, such as nuclear energy and aerospace, owing to their exceptional melting temperatures, thermal durability, and corrosion resistance. These metals have body-centered cubic crystal structure, characterized by limited slip systems and impeded dislocation motion, resulting in significant low-temperature brittleness, which poses challenges for the conventional processing. Additive manufacturing technique provides an innovative approach, enabling the production of intricate parts without molds, which significantly improves the efficiency of material usage. This review provides a comprehensive overview of the advancements in additive manufacturing techniques for the production of refractory metals, such as W, Ta, Mo, and Nb, particularly the laser powder bed fusion. In this review, the influence mechanisms of key process parameters (laser power, scan strategy, and powder characteristics) on the evolution of material microstructure, the formation of metallurgical defects, and mechanical properties were discussed. Generally, optimizing powder characteristics, such as sphericity, implementing substrate preheating, and formulating alloying strategies can significantly improve the densification and crack resistance of manufactured parts. Meanwhile, strictly controlling the oxygen impurity content and optimizing the energy density input are also the key factors to achieve the simultaneous improvement in strength and ductility of refractory metals. Although additive manufacturing technique provides an innovative solution for processing refractory metals, critical issues, such as residual stress control, microstructure and performance anisotropy, and process stability, still need to be addressed. This review not only provides a theoretical basis for the additive manufacturing of high-performance refractory metals, but also proposes forward-looking directions for their industrial application.

    参考文献
    相似文献
    引证文献
引用本文

路笃瑞,宋索成,卢秉恒.难熔金属的增材制造工艺优化与性能调控研究进展[J].稀有金属材料与工程,2026,55(2):345~364.[Lu Durui, Song Suocheng, Lu Bingheng. Research Progress on Process Optimization and Perfor-mance Control of Additive Manufacturing for Refractory Metals[J]. Rare Metal Materials and Engineering,2026,55(2):345~364.]
DOI:10.12442/j. issn.1002-185X.20250370

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-17
  • 最后修改日期:2025-08-13
  • 录用日期:2025-08-27
  • 在线发布日期: 2025-12-31
  • 出版日期: 2025-12-24