+高级检索
机器学习辅助设计穿甲用TiZr系高熵合金的可解释模型
DOI:
作者:
作者单位:

陆军工程大学弹药保障与安全性评估国家级实验教学示范中心

作者简介:

通讯作者:

中图分类号:

基金项目:


Machine Learning-Assisted Design of Interpretable Models for TiZr-Based High-Entropy Alloys Used in Armor-Piercing Applications
Author:
Affiliation:

National Demonstration Center of Experimental Teaching for Ammunition Support and Safety Evaluation Education,Army Engineering University of PLA,Shi Jiazhuang

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现代军事技术对穿甲战斗部材料毁伤效能的需求持续升级,推动着高性能合金体系的创新研究。在此背景下,兼具高硬度、抗压强度及高温相稳定性的TiZr系高熵合金,因其在穿甲战斗部中的潜在应用价值受到广泛关注。本研究引入机器学习方法辅助开展高熵合金成分设计,旨在探索成分与性能之间的复杂关系,提升合金设计效率。考虑到穿甲作用对合金材料硬度的高要求,搭建了包含组元摩尔分数和5项关键描述符在内的15维特征数据集,集成157组合金硬度数据,采用八种典型机器学习模型(随机森林、K近邻、支持向量机等)进行训练,经网格搜索超参数优化及交叉验证,筛选出精度最优的预测模型,并利用SHAP可解释性框架(SHAP,Shapley Additive Explanations)揭示特征贡献机制。结果表明,XGBoost模型(XGBoost,Extreme Gradient Boosting)预测质量最高,决定系数R2达到0.73,平均绝对百分比误差为14.0%,混合焓(ΔH_mix)、Nb元素含量、原子尺寸失配(δ)是影响合金硬度的最主要因素,硬度调控需协同热力学稳定性、电子结构与几何尺寸三要素,特征间补偿效应是性能优化的关键,该方法为穿甲用TiZr系高熵合金提供了成分设计新范式,验证了机器学习在高效毁伤领域的巨大工程价值,有助于加速新型高性能材料的开发进程。

    Abstract:

    Modern military technology demands continuous improvement in the damage efficiency of armor-piercing projectile core materials, driving innovation in high-performance alloy systems. TiZr-based refractory high-entropy alloys (RHEAs, Refractory High-Entropy Alloys), known for their high hardness, compressive strength, and thermal phase stability, have garnered attention due to their potential application in armor-piercing warheads. This study introduces a machine learning (ML)-assisted approach to alloy design, aiming to uncover the complex relationship between composition and performance while improving design efficiency. To address the critical requirement for hardness in armor-piercing applications, a 15-dimensional feature dataset was constructed, incorporating component molar fractions and five key descriptors, based on 157 experimental hardness data points. Eight ML models—including random forest, K-nearest neighbors, and support vector machines—were trained, and XGBoost was identified as the most accurate through hyperparameter tuning via grid search and cross-validation. The SHAP (SHAP,Shapley Additive Explanations) framework was applied to interpret feature contributions. Results indicate that the XGBoost model achieves the highest predictive performance (R2 = 0.73, and the average absolute percentage error is 14.0%). The most influential factors affecting alloy hardness are mixing enthalpy (ΔH_mix), niobium (Nb) content, and atomic size mismatch (δ). Effective hardness control necessitates the synergistic regulation of thermodynamic stability, electronic structure, and geometric dimensions, where inter-feature compensation plays a critical role in optimizing overall performance. This work establishes a novel compositional design paradigm for TiZr-based RHEAs, demonstrating the engineering value of ML in enhancing material development for high-efficiency damage applications.

    参考文献
    相似文献
    引证文献
引用本文

罗浩,刘天宇,魏华男,高兴勇,范飞高,翟安琪,刘卓.机器学习辅助设计穿甲用TiZr系高熵合金的可解释模型[J].稀有金属材料与工程,,().[Luo Hao, Liu Tianyu, Wei Huanan, Gao Xingyong, Fan Feigao, Zhai Anqi, Liu Zhuo. Machine Learning-Assisted Design of Interpretable Models for TiZr-Based High-Entropy Alloys Used in Armor-Piercing Applications[J]. Rare Metal Materials and Engineering,,().]
DOI:[doi]

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-24
  • 最后修改日期:2025-11-12
  • 录用日期:2025-11-18
  • 在线发布日期:
  • 出版日期: