Abstract:To investigate the effect of solution treatment and aging process parameters on the microstructure and mechanical properties of TB18 titanium alloy, process optimization research was conducted based on the mixed-level orthogonal experiment design of factor levels. Results show that through range analysis, the significance order of process parameters is determined as follows: solution cooling method>solution temperature>aging time>aging temperature>solution time. Considering the strength-ductility matching and engineering application requirements, the benchmark parameters are selected as solution time of 1 h, solution cooling method of air cooling (AC), aging temperature of 525 °C, and aging time of 4 h. Furthermore, the effects of solution temperature in the range of 790–870 °C on the impact toughness and micro-fracture characteristics of the alloy were studied. The results reveal that the larger the area of shear lip and fibrous zone, and the smaller the area of radiation zone, the better the toughness of the alloy. With the increase in solution temperature, the length of secondary cracks on the fracture surface increases, the number of dimples increases, and the toughness is enhanced. Based on the collaborative optimization of strength and toughness, the optimal heat treatment process for TB18 alloy is determined as 870 °C/1 h, AC+525 °C/4 h, AC.